前情提示:Go语言学习者。本文参考https://labuladong.gitee.io/algo,代码自己参考抒写,若有不妥之处,感谢指正
关于golang算法文章,为了便于下载和整理,都已开源放在:
- https://github.com/honlu/GoLabuladongAlgorithm
- https://gitee.com/dreamzll/GoLabuladongAlgorithm方便就请分享,star!备注转载地址!欢迎一起学习和交流!
先给大家讲个笑话乐呵一下:
有一天阿东到图书馆借了 N 本书,出图书馆的时候,警报响了,于是保安把阿东拦下,要检查一下哪本书没有登记出借。阿东正准备把每一本书在报警器下过一下,以找出引发警报的书,但是保安露出不屑的眼神:你连二分查找都不会吗?于是保安把书分成两堆,让第一堆过一下报警器,报警器响;于是再把这堆书分成两堆…… 最终,检测了 logN 次之后,保安成功的找到了那本引起警报的书,露出了得意和嘲讽的笑容。于是阿东背着剩下的书走了。
从此,图书馆丢了 N – 1 本书。
二分查找并不简单,Knuth 大佬(发明 KMP 算法的那位)都说二分查找:思路很简单,细节是魔鬼。很多人喜欢拿整型溢出的 bug 说事儿,但是二分查找真正的坑根本就不是那个细节问题,而是在于到底要给
mid
加一还是减一,for 里到底用
<=
还是
<
。
你要是没有正确理解这些细节,写二分肯定就是玄学编程,有没有 bug 只能靠菩萨保佑。我特意写了一首诗来歌颂该算法,概括本文的主要内容,建议保存:
本文就来探究几个最常用的二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。而且,我们就是要深入细节,比如不等号是否应该带等号,mid 是否应该加一等等。分析这些细节的差异以及出现这些差异的原因,保证你能灵活准确地写出正确的二分查找算法。
二分查找框架
func binarySearch(nums []int, target int) int{left := 0right := ...for ...{mid := (right + left) / 2if nums[mid] == target{...}else if nums[mid] < target{left = ...}else{right = ...}}return ...}
分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节。本文都会使用 else if,旨在讲清楚,读者理解后可自行简化。
其中
...
标记的部分,就是可能出现细节问题的地方,当你见到一个二分查找的代码时,首先注意这几个地方。后文用实例分析这些地方能有什么样的变化。
另外声明一下,计算 mid 时需要防止溢出,代码中
left + (right - left) / 2
就和
(left + right) / 2
的结果相同,但是有效防止了
left
和
right
太大直接相加导致溢出。
一、寻找一个数(基本的二分搜索)
这个场景是最简单的,可能也是大家最熟悉的,即搜索一个数,如果存在,返回其索引,否则返回 -1。
func binarySearch(nums []int, target int) int{left := 0right := len(nums) - 1 // 注意for left <= right{mid := (right + left) / 2if nums[mid] == target{return mid}else if nums[mid] < target{left = mid + 1 // 注意}else{right = mid -1 // 注意}}return -1}
1、为什么 for 循环的条件中是 <=,而不是 <?
答:因为初始化
right
的赋值是
nums.length - 1
,即最后一个元素的索引,而不是
nums.length
。
这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间
[left, right]
,后者相当于左闭右开区间
[left, right)
,因为索引大小为
nums.length
是越界的。
我们这个算法中使用的是前者
[left, right]
两端都闭的区间。这个区间其实就是每次进行搜索的区间。
什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止:
if nums[mid] == target{return mid}
但如果没找到,就需要 for 循环终止,然后返回 -1。那 for 循环什么时候应该终止?搜索区间为空的时候应该终止,意味着你没得找了,就等于没找到嘛。
for(left <= right)
的终止条件是
left == right + 1
,写成区间的形式就是
[right + 1, right]
,或者带个具体的数字进去
[3, 2]
,可见这时候区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 for 循环终止是正确的,直接返回 -1 即可。
for(left < right)
的终止条件是
left == right
,写成区间的形式就是
[right, right]
,或者带个具体的数字进去
[2, 2]
,这时候区间非空,还有一个数 2,但此时 for 循环终止了。也就是说这区间
[2, 2]
被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就是错误的。
当然,如果你非要用
for(left < right)
也可以,我们已经知道了出错的原因,就打个补丁好了:
//...for left < right{//...}if nums[left] == target{return left}else{return -1}
2、为什么
left = mid + 1
,
right = mid - 1
?我看有的代码是
right = mid
或者
left = mid
,没有这些加加减减,到底怎么回事,怎么判断?
答:这也是二分查找的一个难点,不过只要你能理解前面的内容,就能够很容易判断。
刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即
[left, right]
。那么当我们发现索引
mid
不是要找的
target
时,下一步应该去搜索哪里呢?
当然是去搜索
[left, mid-1]
或者
[mid+1, right]
对不对?因为
mid
已经搜索过,应该从搜索区间中去除。
3、此算法有什么缺陷?
答:至此,你应该已经掌握了该算法的所有细节,以及这样处理的原因。但是,这个算法存在局限性。
比如说给你有序数组
nums = [1,2,2,2,3]
,
target
为 2,此算法返回的索引是 2,没错。但是如果我想得到
target
的左侧边界,即索引 1,或者我想得到
target
的右侧边界,即索引 3,这样的话此算法是无法处理的。
这样的需求很常见,你也许会说,找到一个 target,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的复杂度了。
我们后续的算法就来讨论这两种二分查找的算法。
二、寻找左侧边界的二分搜索
以下是最常见的代码形式,其中的标记是需要注意的细节:
func leftBound(nums []int, target int) int{if len(nums) == 0{return -1}left := 0right := len(nums) // 注意for left < right{ // 注意mid := (left + right) / 2if nums[mid] == target{right = mid}else if nums[mid] < target{left = mid + 1}else{right = mid // 注意}}return left}
1、为什么 for 中是
<
而不是
<=
?
答:用相同的方法分析,因为
right = nums.length
而不是
nums.length - 1
。因此每次循环的「搜索区间」是
[left, right)
左闭右开。
for(left < right)
终止的条件是
left == right
,此时搜索区间
[left, left)
为空,所以可以正确终止。
PS:这里先要说一个搜索左右边界和上面这个算法的一个区别,也是很多读者问的:刚才的
right
不是
nums.length - 1
吗,为啥这里非要写成
nums.length
使得「搜索区间」变成左闭右开呢?
因为对于搜索左右侧边界的二分查找,这种写法比较普遍,我就拿这种写法举例了,保证你以后遇到这类代码可以理解。你非要用两端都闭的写法反而更简单,我会在后面写相关的代码,把三种二分搜索都用一种两端都闭的写法统一起来,你耐心往后看就行了。
2、为什么没有返回 -1 的操作?如果
nums
中不存在
target
这个值,怎么办?
答:因为要一步一步来,先理解一下这个「左侧边界」有什么特殊含义:
对于这个数组,算法会返回 1。这个 1 的含义可以这样解读:
nums
中小于 2 的元素有 1 个。
比如对于有序数组
nums = [2,3,5,7]
,
target = 1
,算法会返回 0,含义是:
nums
中小于 1 的元素有 0 个。
再比如说
nums = [2,3,5,7], target = 8
,算法会返回 4,含义是:
nums
中小于 8 的元素有 4 个。
综上可以看出,函数的返回值(即
left
变量的值)取值区间是闭区间
[0, nums.length]
,所以我们简单添加两行代码就能在正确的时候 return -1:
for left < right{// ...}// target比所有数都大if left == len(nums){return -1}// 类似之前算法的处理方式.Go中没有三元表达式if nums[left] == target{return left}else{return -1}
3、为什么
left = mid + 1
,
right = mid
?和之前的算法不一样?
答:这个很好解释,因为我们的「搜索区间」是
[left, right)
左闭右开,所以当
nums[mid]
被检测之后,下一步的搜索区间应该去掉
mid
分割成两个区间,即
[left, mid)
或
[mid + 1, right)
。
4、为什么该算法能够搜索左侧边界?
答:关键在于对于
nums[mid] == target
这种情况的处理:
if nums[mid] == target{right = mid}
可见,找到 target 时不要立即返回,而是缩小「搜索区间」的上界
right
,在区间
[left, mid)
中继续搜索,即不断向左收缩,达到锁定左侧边界的目的。
5、为什么返回
left
而不是
right
?
答:都是一样的,因为 for 终止的条件是
left == right
。
6、能不能想办法把
right
变成
nums.length - 1
,也就是继续使用两边都闭的「搜索区间」?这样就可以和第一种二分搜索在某种程度上统一起来了。
答:当然可以,只要你明白了「搜索区间」这个概念,就能有效避免漏掉元素,随便你怎么改都行。下面我们严格根据逻辑来修改:
因为你非要让搜索区间两端都闭,所以
right
应该初始化为
nums.length - 1
,for 的终止条件应该是
left == right + 1
,也就是其中应该用
<=
:
func leftBound(nums []int, target int) int{// 搜索区间为[left, right]left := 0right := len(nums) - 1 // 注意for left <= right{ // 注意mid := (left + right) / 2}}
因为搜索区间是两端都闭的,且现在是搜索左侧边界,所以
left
和
right
的更新逻辑如下:
if nums[mid] < target{// 搜索区间变为[mid+1, right]left = mid + 1}else if nums[mid] > target{// 搜索区间变为[left, mid - 1]right = mid - 1}else{// 相等,收缩右侧边界right = mid - 1}
由于 while 的退出条件是
left == right + 1
,所以当
target
比
nums
中所有元素都大时,会存在以下情况使得索引越界:
因此,最后返回结果的代码应该检查越界情况:
if left >= len(nums) || nums[left] != target{return -1}return left
至此,整个算法就写完了,完整代码如下:
// 左侧边界的统一写法func leftBound(nums []int, target int) int{left := 0right := len(nums) - 1// 搜索区间[left, right]for left <= right{mid := (left + right) / 2if nums[mid] < target{// 搜索区间变为[mid+1, right]left = mid + 1}else if nums[mid] > target{// 搜索区间变为[left, mid - 1]right = mid - 1}else{// 相等,收缩右侧边界right = mid - 1}}// 检查出界情况if left >= len(nums) || nums[left] != target{return -1}return left}
这样就和第一种二分搜索算法统一了,都是两端都闭的「搜索区间」,而且最后返回的也是
left
变量的值。只要把住二分搜索的逻辑,两种形式大家看自己喜欢哪种记哪种吧。
三、寻找右侧边界的二分查找
类似寻找左侧边界的算法,这里也会提供两种写法,还是先写常见的左闭右开的写法,只有两处和搜索左侧边界不同,已标注:
func rightBound(nums []int, target int) int{if len(nums) == 0{return -1}left := 0right := len(nums)for left < right{mid := (left + right) / 2if nums[mid] == target{left = mid + 1 // 注意}else if nums[mid] < target{left = mid + 1}else{right = mid}}return left - 1 // 注意}
1、为什么这个算法能够找到右侧边界?
答:类似地,关键点还是这里:
if nums[mid] == target{left = mid + 1}
当
nums[mid] == target
时,不要立即返回,而是增大「搜索区间」的下界
left
,使得区间不断向右收缩,达到锁定右侧边界的目的。
2、为什么最后返回
left - 1
而不像左侧边界的函数,返回
left
?而且我觉得这里既然是搜索右侧边界,应该返回
right
才对。
答:首先,while 循环的终止条件是
left == right
,所以
left
和
right
是一样的,你非要体现右侧的特点,返回
right - 1
好了。
至于为什么要减一,这是搜索右侧边界的一个特殊点,关键在这个条件判断:
if nums[mid] == target{left = mid + 1// 这样想: mid = left - 1}
因为我们对
left
的更新必须是
left = mid + 1
,就是说 while 循环结束时,
nums[left]
一定不等于
target
了,而
nums[left-1]
可能是
target
。
至于为什么
left
的更新必须是
left = mid + 1
,同左侧边界搜索,就不再赘述。
3、为什么没有返回 -1 的操作?如果
nums
中不存在
target
这个值,怎么办?
答:类似之前的左侧边界搜索,因为 while 的终止条件是
left == right
,就是说
left
的取值范围是
[0, nums.length]
,所以可以添加两行代码,正确地返回 -1:
for left < right{// ...}if left == 0{return -1}if nums[left - 1] == target{return left - 1}else{return -1}
4、是否也可以把这个算法的「搜索区间」也统一成两端都闭的形式呢?这样这三个写法就完全统一了,以后就可以闭着眼睛写出来了。
答:当然可以,类似搜索左侧边界的统一写法,其实只要改两个地方就行了:
// 右侧统一写法func rightBound(nums []int, target int) int{left := 0right := len(nums) - 1// 搜索区间[left, right]for left <= right{mid := (left + right) / 2if nums[mid] < target{// 搜索区间变为[mid+1, right]left = mid + 1}else if nums[mid] > target{// 搜索区间变为[left, mid - 1]right = mid - 1}else{// 相等。注意这里改成收缩左侧边界即可left = mid + 1}}// 检查出界情况.注意这里检查right越界的情况,见下图if right < 0 || nums[right] != target{return -1}return right}
当
target
比所有元素都小时,
right
会被减到 -1,所以需要在最后防止越界:
至此,搜索右侧边界的二分查找的两种写法也完成了,其实将「搜索区间」统一成两端都闭反而更容易记忆,你说是吧?
四、逻辑统一
来梳理一下这些细节差异的因果逻辑:
第一个,最基本的二分查找算法:
因为我们初始化 right = nums.length - 1所以决定了我们的「搜索区间」是 [left, right]所以决定了 while (left <= right)同时也决定了 left = mid+1 和 right = mid-1因为我们只需找到一个 target 的索引即可所以当 nums[mid] == target 时可以立即返回
第二个,寻找左侧边界的二分查找:
因为我们初始化 right = nums.length所以决定了我们的「搜索区间」是 [left, right)所以决定了 while (left < right)同时也决定了 left = mid + 1 和 right = mid因为我们需找到 target 的最左侧索引所以当 nums[mid] == target 时不要立即返回而要收紧右侧边界以锁定左侧边界
第三个,寻找右侧边界的二分查找:
因为我们初始化 right = nums.length所以决定了我们的「搜索区间」是 [left, right)所以决定了 while (left < right)同时也决定了 left = mid + 1 和 right = mid因为我们需找到 target 的最右侧索引所以当 nums[mid] == target 时不要立即返回而要收紧左侧边界以锁定右侧边界又因为收紧左侧边界时必须 left = mid + 1所以最后无论返回 left 还是 right,必须减一
对于寻找左右边界的二分搜索,常见的手法是使用左闭右开的「搜索区间」,我们还根据逻辑将「搜索区间」全都统一成了两端都闭,便于记忆,只要修改两处即可变化出三种写法:
func binarySearch(nums []int, target int) int{left := 0right := len(nums) - 1for left <= right{mid := (right + left) / 2if nums[mid] < target{left = mid + 1}else if nums[mid] > target{right = mid -1}else{// 相等.直接返回return mid}}// 直接返回return -1}// 左侧边界的统一写法func leftBound(nums []int, target int) int{left := 0right := len(nums) - 1for left <= right{mid := (left + right) / 2if nums[mid] < target{left = mid + 1}else if nums[mid] > target{right = mid - 1}else{// 相等,不返回,锁定左侧边界right = mid - 1}}// 检查left出界情况if left >= len(nums) || nums[left] != target{return -1}return left}// 右侧统一写法func rightBound(nums []int, target int) int{left := 0right := len(nums) - 1for left <= right{mid := (left + right) / 2if nums[mid] < target{left = mid + 1}else if nums[mid] > target{right = mid - 1}else{// 相等。不返回,锁定右侧边界left = mid + 1}}// 检查right越界的情况if right < 0 || nums[right] != target{return -1}return right}
如果以上内容你都能理解,那么恭喜你,二分查找算法的细节不过如此。
通过本文,你学会了:
1、分析二分查找代码时,不要出现 else,全部展开成 else if 方便理解。
2、注意「搜索区间」和 while 的终止条件,如果存在漏掉的元素,记得在最后检查。
3、如需定义左闭右开的「搜索区间」搜索左右边界,只要在
nums[mid] == target
时做修改即可,搜索右侧时需要减一。
4、如果将「搜索区间」全都统一成两端都闭,好记,只要稍改
nums[mid] == target
条件处的代码和返回的逻辑即可,推荐拿小本本记下,作为二分搜索模板。