AI智能
改变未来

可行吗?拓扑视角来优化神经网络的连通性。道翰天琼认知智能机器人平台API接口大脑为您揭秘。

 

 

在ECCV 2020上,商汤研究院深度学习中间件组提出的拓扑视角为分析神经网络的优化过程提供了一种新的思路。

 

在设计神经网络的深度、卷积类型、归一化层和非线性层之外,我们提出对神经网络的拓扑连接进行优化,来取代以往的堆叠或手工设计的连接方式。通过将网络表示为有向无环图,并向边赋予可学习的权重来表示连接的重要程度。整个优化过程可以通过可微分的方式进行。进一步地,我们对连接的分布添加额外的稀疏约束,使得重要的连接得以保留,移除不重要的连接,进一步提升网络的性能和泛化能力。这种优化方式可以很好的和现有的网络结构进行结合。实验结果表明优化得到的连通方式超过了传统的基于规则设计连接,包括随机的、残差的和完全图的。在不额外增加过多参数量和计算量的基础上,在ImageNet图像分类和COCO目标检测上取得了明显的提升。
1

简介和动机

深度学习成功地将特征工程从手工设计转移到自动学习。这标志着从样本到特征的映射可以根据不同的任务来进行优化学习。作为一种趋势,寻找有效的神经网络结构是一个重要且具有实际价值的方向。但是结构的设计依旧充满挑战且耗时。部分研究工作关注于网络的深度、卷积的类型、归一化和非线性操作等。在这些维度之外,也有一些工作尝试在网络的拓扑连接上进行改进。从VGGNet、GoogleNet、Highway到ResNet、MobileNet-v2、ShuffleNet,网络的拓扑连接从平原拓扑发展到残差拓扑,一定程度上缓解了网络加深带来的梯度消失和爆炸问题。不同于这些相对稀疏的连接形式,DenseNet提出将层与层之间全部连接复用特征表示。现有的一些网络结构搜索(NAS)方法也尝试进行连接方式的搜索。在一定程度上,这些拓扑层面的改进反映了拓扑连接对优化过程的影响。但是为了平衡设计成本和性能,这些网络大多采用堆叠的方式来构建最终的结构,一定程度上限制了拓扑的可能性。因此,我们思考:神经网络的连通性可以被优化吗?合适的方法是什么? 2

神经网络的拓扑视角

为了回答这些,我们提出一种新的拓扑视角来表达分析现有的网络结构。如图1所示,网络被表示为有向无环图(DAG),其中特征融合、卷积计算、归一化和非线性等特征计算被表示为节点,层与层之间的连接被表示为边,反映信息流的传递。图1给出了残差拓扑连接所对应的拓扑形式,我们首次展示了残差的拓扑连接是一种相对稠密的连接形式,当残差的间隔为1时,网络可以被表示为完全图(complete graph),即各个节点之间均有边连接。所有节点可以直接从输入获取特征,从输出获得梯度更新,这在一定程度上解释了残差连接能够有效的原因。

 

道翰天琼认知智能未来机器人接口API简介介绍

  • 认知智能是计算机科学的一个分支科学,是智能科学发展的高级阶段,它以人类认知体系为基础,以模仿人类核心能力为目标,以信息的理解、存储、应用为研究方向,以感知信息的深度理解和自然语言信息的深度理解为突破口,以跨学科理论体系为指导,从而形成的新一代理论、技术及应用系统的技术科学。 认知智能的核心研究范畴包括:1.宇宙、信息、大脑三者关系;2.人类大脑结构、功能、机制;3.哲学体系、文科体系、理科体系;4.认知融通、智慧融通、双脑(人脑和电脑)融通等核心体系。 认知智能四步走:1.认知宇宙世界。支撑理论体系有三体(宇宙、信息、大脑)论、易道论、存在论、本体论、认知论、融智学、HNC 等理论体系;2.清楚人脑结构、功能、机制。支撑学科有脑科学、心理学、逻辑学、情感学、生物学、化学等学科。3.清楚信息内涵规律规则。支撑学科有符号学、语言学、认知语言学、形式语言学等学科。4.系统落地能力。支撑学科有计算机科学、数学等学科。
    认知智能CI机器人是杭州道翰天琼智能科技有限公司旗下产品。认知智能机器人是依托道翰天琼10年研发的认知智能CI体系为核心而打造的认知智能机器人大脑,是全球第一个认知智能机器人大脑。具有突破性,创新性,领航性。是新一代智能认知智能的最好的产品支撑。 认知智能机器人技术体系更加先进,更加智能,是新一代智能,认知智能领域世界范围内唯一的认知智能机器人。 认知智能机器人是新时代的产物,是新一代智能认知智能的产物。代表了新一代智能认知智能最核心的优势。和人工智能机器人大脑相比,优势非常明显。智能度高,客户粘性大,客户满意度高,易于推广和传播等核心特点。 依托认知智能机器人平台提供的机器人大脑服务,可以赋能各个行业,各个领域的智能设备,各类需要人机互动的领域等。认知智能机器人平台网址:www.weilaitec.com,www.citec.top。欢迎注册使用,走进更智能机器人世界。
    认知智能和人工智能的优劣势对比主要可以分为四大方面: 第一:时代发展不同。人工智能是智能时代发展的第二个阶段,认知智能是智能时代发展的第三个阶段。时代发展上决定了认知智能更显具有时代领先性。 第二:基础理论体系不同。人工智能的基础理论体系以数学为基础,以统计概率体系为基础。认知智能基础理论体系以交叉许可理论体系为基础。包含古今中外哲学体系,心理学体系,逻辑学体系,语言学体系,符号学体系,数学体系等学科。其基础理论体系更加具有创新性,突破性和领先性。且交叉学科理论体系的研究也是未来智能发展的大方向。其具体理论体系,还包含三体论(宇宙,信息,大脑三者关系),融智学,和HNC等。 第三:技术体系不同。人工智能的核心技术体系主要是算法,机器学习,深度学习,知识图谱等。其主要功用在感知智能。感知智能其核心主要是在模仿人类的感知能力。认知智能的核心技术体系是以交叉学科理论体系而衍生出来的。具体包含三大核心技术体系,认知维度,类脑模型和万维图谱。认知智能的技术体系核心以类脑的认知体系为基础。以全方位模仿类脑能力为目标。人工智能以感知智能为基础的体系,只能作为认知智能中的类脑模型技术体系中的感知层技术体系。类脑模型大致包含,感知层,记忆层,学习层,理解层,认知层,逻辑层,情感层,沟通层,意识层等9大核心技术层。因此人工智能的核心只是作为认知智能类脑模型中的感知层。因此在技术体系上,人工智能和认知智能基本上没有太多的可比性。 第四:智能度成本等方面的不同:人工智能产品的综合智能程度,普遍在2-3岁左右的智力水平。认知智能产品其智能程度大致在5-8岁左右。认知智能体系构建的机器人更加智能。且更省时间,更省人力和资金。优势非常多。具体请看下列的逐项对比。

道翰天琼CiGril机器人API

道翰天琼CiGril认知智能机器人API用户需要按步骤获取基本信息:

  1. 在平台注册账号
  2. 登录平台,进入后台管理页面,创建应用,然后查看应用,查看应用相关信息。
  3. 在应用信息页面,找到appid,appkey秘钥等信息,然后写接口代码接入机器人应用。

开始接入

请求地址:http://www.weilaitec.com/cigirlrobot.cgr

请求方式:post

请求参数:

参数

类型

默认值

描述

userid  

String  

平台注册账号

appid  

String  

平台创建的应用id

key  

String  

平台应用生成的秘钥

msg  

String  

\”\”

用户端消息内容

ip  

String  

\”\”

客户端ip要求唯一性,无ip等可以用QQ账号,微信账号,手机MAC地址等代替。

 

接口连接示例:http://www.weilaitec.com/cigirlrobot.cgr?key=UTNJK34THXK010T566ZI39VES50BLRBE8R66H5R3FOAO84J3BV&msg=你好&ip=119.25.36.48&userid=jackli&appid=52454214552

注意事项:参数名称都要小写,五个参数不能遗漏,参数名称都要写对,且各个参数的值不能为空字符串。否则无法请求成功。userid,appid,key三个参数要到平台注册登录创建应用之后,然后查看应用详情就可以看到。userid就是平台注册账号。

示例代码JAVA:

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.URL;

public class apitest {

    /**
     * Get请求,获得返回数据
     * @param urlStr
     * @return
     */
    private static String opUrl(String urlStr)
    {        
        URL url = null;
        HttpURLConnection conn = null;
        InputStream is = null;
        ByteArrayOutputStream baos = null;
        try
        {
            url = new URL(urlStr);
            conn = (HttpURLConnection) url.openConnection();
            conn.setReadTimeout(5 * 10000);
            conn.setConnectTimeout(5 * 10000);
            conn.setRequestMethod(\”POST\”);
            if (conn.getResponseCode() == 200)
            {
                is = conn.getInputStream();
                baos = new ByteArrayOutputStream();
                int len = -1;
                byte[] buf = new byte[128];

                while ((len = is.read(buf)) != -1)
                {
                    baos.write(buf, 0, len);
                }
                baos.flush();
                String result = baos.toString();
                return result;
            } else
            {
                throw new Exception(\”服务器连接错误!\”);
            }

        } catch (Exception e)
        {
            e.printStackTrace();
        } finally
        {
            try
            {
                if (is != null)
                    is.close();
            } catch (IOException e)
            {
                e.printStackTrace();
            }

            try
            {
                if (baos != null)
                    baos.close();
            } catch (IOException e)
            {
                e.printStackTrace();
            }
            conn.disconnect();
        }
        return \”\”;
    }
    
    
    public static void main(String args []){        
            //msg参数就是传输过去的对话内容。            
            System.out.println(opUrl(\”计算机网络/cigirlrobot.cgr\”));
            
    }
}

 

 

 

赞(0) 打赏
未经允许不得转载:爱站程序员基地 » 可行吗?拓扑视角来优化神经网络的连通性。道翰天琼认知智能机器人平台API接口大脑为您揭秘。