AI智能
改变未来

偷天换日,用JavaAgent欺骗你的JVM

原创:微信公众号

码农参上

(ID:CODER_SANJYOU),欢迎分享,转载请保留出处。

熟悉Spring的小伙伴们应该都对aop比较了解,面向切面编程允许我们在目标方法的前后织入想要执行的逻辑,而今天要给大家介绍的Java Agent技术,在思想上与aop比较类似,翻译过来可以被称为Java代理Java探针技术。

Java Agent出现在JDK1.5版本以后,它允许程序员利用agent技术构建一个独立于应用程序的代理程序,用途也非常广泛,可以协助监测、运行、甚至替换其他JVM上的程序,先从下面这张图直观的看一下它都被应用在哪些场景:

看到这里你是不是也很好奇,究竟是什么神仙技术,能够应用在这么多场景下,那今天我们就来挖掘一下,看看神奇的Java Agent是如何工作在底层,默默支撑了这么多优秀的应用。

回到文章开头的类比,我们还是用和aop比较的方式,来先对Java Agent有一个大致的了解:

  • 作用级别:aop运行于应用程序内的方法级别,而agent能够作用于虚拟机级别
  • 组成部分:aop的实现需要目标方法和逻辑增强部分的方法,而Java Agent要生效需要两个工程,一个是agent代理,另一个是需要被代理的主程序
  • 执行场合:aop可以运行在切面的前后或环绕等场合,而Java Agent的执行只有两种方式,jdk1.5提供的
    preMain

    模式在主程序运行前执行,jdk1.6提供的

    agentMain

    在主程序运行后执行

下面我们就分别看一下在两种模式下,如何动手实现一个agent代理程序。

Premain模式

Premain模式允许在主程序执行前执行一个agent代理,实现起来非常简单,下面我们分别实现两个组成部分。

agent

先写一个简单的功能,在主程序执行前打印一句话,并打印传递给代理的参数:

public class MyPreMainAgent {public static void premain(String agentArgs, Instrumentation inst) {System.out.println("premain start");System.out.println("args:"+agentArgs);}}

在写完了agent的逻辑后,需要把它打包成

jar

文件,这里我们直接使用maven插件打包的方式,在打包前进行一些配置。

<build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-jar-plugin</artifactId><version>3.1.0</version><configuration><archive><manifest><addClasspath>true</addClasspath></manifest><manifestEntries><Premain-Class>com.cn.agent.MyPreMainAgent</Premain-Class><Can-Redefine-Classes>true</Can-Redefine-Classes><Can-Retransform-Classes>true</Can-Retransform-Classes><Can-Set-Native-Method-Prefix>true</Can-Set-Native-Method-Prefix></manifestEntries></archive></configuration></plugin></plugins></build>

配置的打包参数中,通过

manifestEntries

的方式添加属性到

MANIFEST.MF

文件中,解释一下里面的几个参数:

  • Premain-Class

    :包含

    premain

    方法的类,需要配置为类的全路径

  • Can-Redefine-Classes

    :为

    true

    时表示能够重新定义class

  • Can-Retransform-Classes

    :为

    true

    时表示能够重新转换class,实现字节码替换

  • Can-Set-Native-Method-Prefix

    : 为

    true

    时表示能够设置native方法的前缀

其中

Premain-Class

为必须配置,其余几项是非必须选项,默认情况下都为

false

,通常也建议加入,这几个功能我们会在后面具体介绍。在配置完成后,使用

mvn

命令打包:

mvn clean package

打包完成后生成

myAgent-1.0.jar

文件,我们可以解压

jar

文件,看一下生成的

MANIFEST.MF

文件:

可以看到,添加的属性已经被加入到了文件中。到这里,agent代理部分就完成了,因为代理不能够直接运行,需要附着于其他程序,所以下面新建一个工程来实现主程序。

主程序

在主程序的工程中,只需要一个能够执行的

main

方法的入口就可以了。

public class AgentTest {public static void main(String[] args) {System.out.println("main project start");}}

在主程序完成后,要考虑的就是应该如何将主程序与agent工程连接起来。这里可以通过

-javaagent

参数来指定运行的代理,命令格式如下:

java -javaagent:myAgent.jar -jar AgentTest.jar

并且,可以指定的代理的数量是没有限制的,会根据指定的顺序先后依次执行各个代理,如果要同时运行两个代理,就可以按照下面的命令执行:

java -javaagent:myAgent1.jar -javaagent:myAgent2.jar  -jar AgentTest.jar

以我们在idea中执行程序为例,在

VM options

中加入添加启动参数:

-javaagent:F:\\Workspace\\MyAgent\\target\\myAgent-1.0.jar=Hydra-javaagent:F:\\Workspace\\MyAgent\\target\\myAgent-1.0.jar=Trunks

执行

main

方法,查看输出结果:

根据执行结果的打印语句可以看出,在执行主程序前,依次执行了两次我们的agent代理。可以通过下面的图来表示执行代理与主程序的执行顺序。

缺陷

在提供便利的同时,premain模式也有一些缺陷,例如如果agent在运行过程中出现异常,那么也会导致主程序的启动失败。我们对上面例子中agent的代码进行一下改造,手动抛出一个异常。

public static void premain(String agentArgs, Instrumentation inst) {System.out.println("premain start");System.out.println("args:"+agentArgs);throw new RuntimeException("error");}

再次运行主程序:

可以看到,在agent抛出异常后主程序也没有启动。针对premain模式的一些缺陷,在jdk1.6之后引入了agentmain模式。

Agentmain模式

agentmain模式可以说是premain的升级版本,它允许代理的目标主程序的jvm先行启动,再通过

attach

机制连接两个jvm,下面我们分3个部分实现。

agent

agent部分和上面一样,实现简单的打印功能:

public class MyAgentMain {public static void agentmain(String agentArgs, Instrumentation instrumentation) {System.out.println("agent main start");System.out.println("args:"+agentArgs);}}

修改maven插件配置,指定

Agent-Class

<plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-jar-plugin</artifactId><version>3.1.0</version><configuration><archive><manifest><addClasspath>true</addClasspath></manifest><manifestEntries><Agent-Class>com.cn.agent.MyAgentMain</Agent-Class><Can-Redefine-Classes>true</Can-Redefine-Classes><Can-Retransform-Classes>true</Can-Retransform-Classes></manifestEntries></archive></configuration></plugin>

主程序

这里我们直接启动主程序等待代理被载入,在主程序中使用了

System.in

进行阻塞,防止主进程提前结束。

public class AgentmainTest {public static void main(String[] args) throws IOException {System.in.read();}}

attach机制

和premain模式不同,我们不能再通过添加启动参数的方式来连接agent和主程序了,这里需要借助

com.sun.tools.attach

包下的

VirtualMachine

工具类,需要注意该类不是jvm标准规范,是由Sun公司自己实现的,使用前需要引入依赖:

<dependency><groupId>com.sun</groupId><artifactId>tools</artifactId><version>1.8</version><scope>system</scope><systemPath>${JAVA_HOME}\\lib\\tools.jar</systemPath></dependency>

VirtualMachine

代表了一个要被附着的java虚拟机,也就是程序中需要监控的目标虚拟机,外部进程可以使用

VirtualMachine

的实例将agent加载到目标虚拟机中。先看一下它的静态方法

attach

public static VirtualMachine attach(String var0);

通过

attach

方法可以获取一个jvm的对象实例,这里传入的参数是目标虚拟机运行时的进程号

pid

。也就是说,我们在使用

attach

前,需要先获取刚才启动的主程序的

pid

,使用

jps

命令查看线程

pid

1114016372 RemoteMavenServer3616392 AgentmainTest20204 Jps2460 Launcher

获取到主程序

AgentmainTest

运行时

pid

是16392,将它应用于虚拟机的连接。

public class AttachTest {public static void main(String[] args) {try {VirtualMachine  vm= VirtualMachine.attach("16392");vm.loadAgent("F:\\\\Workspace\\\\MyAgent\\\\target\\\\myAgent-1.0.jar","param");} catch (Exception e) {e.printStackTrace();}}}

在获取到

VirtualMachine

实例后,就可以通过

loadAgent

方法可以实现注入agent代理类的操作,方法的第一个参数是代理的本地路径,第二个参数是传给代理的参数。执行

AttachTest

,再回到主程序

AgentmainTest

的控制台,可以看到执行了了agent中的代码:

这样,一个简单的agentMain模式代理就实现完成了,可以通过下面这张图再梳理一下三个模块之间的关系。

应用

到这里,我们就已经简单地了解了两种模式的实现方法,但是作为高质量程序员,我们肯定不能满足于只用代理单纯地打印语句,下面我们再来看看能怎么利用Java Agent搞点实用的东西。

在上面的两种模式中,agent部分的逻辑分别是在

premain

方法和

agentmain

方法中实现的,并且,这两个方法在签名上对参数有严格的要求,

premain

方法允许以下面两种方式定义:

public static void premain(String agentArgs)public static void premain(String agentArgs, Instrumentation inst)

agentmain

方法允许以下面两种方式定义:

public static void agentmain(String agentArgs)public static void agentmain(String agentArgs, Instrumentation inst)

如果在agent中同时存在两种签名的方法,带有

Instrumentation

参数的方法优先级更高,会被jvm优先加载,它的实例

inst

会由jvm自动注入,下面我们就看看能通过

Instrumentation

实现什么功能。

Instrumentation

先大体介绍一下

Instrumentation

接口,其中的方法允许在运行时操作java程序,提供了诸如改变字节码,新增jar包,替换class等功能,而通过这些功能使Java具有了更强的动态控制和解释能力。在我们编写agent代理的过程中,

Instrumentation

中下面3个方法比较重要和常用,我们来着重看一下。

addTransformer

addTransformer

方法允许我们在类加载之前,重新定义Class,先看一下方法的定义:

void addTransformer(ClassFileTransformer transformer);

ClassFileTransformer

是一个接口,只有一个

transform

方法,它在主程序的

main

方法执行前,装载的每个类都要经过

transform

执行一次,可以将它称为转换器。我们可以实现这个方法来重新定义Class,下面就通过一个例子看看具体如何使用。

首先,在主程序工程创建一个

Fruit

类:

public class Fruit {public void getFruit(){System.out.println("banana");}}

编译完成后复制一份class文件,并将其重命名为

Fruit2.class

,再修改

Fruit

中的方法为:

public void getFruit(){System.out.println("apple");}

创建主程序,在主程序中创建了一个

Fruit

对象并调用了其

getFruit

方法:

public class TransformMain {public static void main(String[] args) {new Fruit().getFruit();}}

这时执行结果会打印

apple

,接下来开始实现premain代理部分。

在代理的

premain

方法中,使用

Instrumentation

addTransformer

方法拦截类的加载:

public class TransformAgent {public static void premain(String agentArgs, Instrumentation inst) {inst.addTransformer(new FruitTransformer());}}

FruitTransformer

类实现了

ClassFileTransformer

接口,转换class部分的逻辑都在

transform

方法中:

public class FruitTransformer implements ClassFileTransformer {@Overridepublic byte[] transform(ClassLoader loader, String className, Class<?> classBeingRedefined,ProtectionDomain protectionDomain, byte[] classfileBuffer){if (!className.equals("com/cn/hydra/test/Fruit"))return classfileBuffer;String fileName="F:\\\\Workspace\\\\agent-test\\\\target\\\\classes\\\\com\\\\cn\\\\hydra\\\\test\\\\Fruit2.class";return getClassBytes(fileName);}public static byte[] getClassBytes(String fileName){File file = new File(fileName);try(InputStream is = new FileInputStream(file);ByteArrayOutputStream bs = new ByteArrayOutputStream()){long length = file.length();byte[] bytes = new byte[(int) length];int n;while ((n = is.read(bytes)) != -1) {bs.write(bytes, 0, n);}return bytes;}catch (Exception e) {e.printStackTrace();return null;}}}

transform

方法中,主要做了两件事:

  • 因为
    addTransformer

    方法不能指明需要转换的类,所以需要通过

    className

    判断当前加载的class是否我们要拦截的目标class,对于非目标class直接返回原字节数组,注意

    className

    的格式,需要将类全限定名中的

    .

    替换为

    /
  • 读取我们之前复制出来的class文件,读入二进制字符流,替换原有
    classfileBuffer

    字节数组并返回,完成class定义的替换

将agent部分打包完成后,在主程序添加启动参数:

-javaagent:F:\\Workspace\\MyAgent\\target\\transformAgent-1.0.jar

再次执行主程序,结果打印:

banana

这样,就实现了在

main

方法执行前class的替换。

redefineClasses

我们可以直观地从方法的名字上来理解它的作用,重定义class,通俗点来讲的话就是实现指定类的替换。方法定义如下:

void redefineClasses(ClassDefinition... definitions) throws  ClassNotFoundException, UnmodifiableClassException;

它的参数是可变长的

ClassDefinition

数组,再看一下

ClassDefinition

的构造方法:

public ClassDefinition(Class<?> theClass,byte[] theClassFile) {...}

ClassDefinition

中指定了的Class对象和修改后的字节码数组,简单来说,就是使用提供的类文件字节,替换了原有的类。并且,在

redefineClasses

方法重定义的过程中,传入的是

ClassDefinition

的数组,它会按照这个数组顺序进行加载,以便满足在类之间相互依赖的情况下进行更改。

下面通过一个例子来看一下它的生效过程,premain代理部分:

public class RedefineAgent {public static void premain(String agentArgs, Instrumentation inst)throws UnmodifiableClassException, ClassNotFoundException {String fileName="F:\\\\Workspace\\\\agent-test\\\\target\\\\classes\\\\com\\\\cn\\\\hydra\\\\test\\\\Fruit2.class";ClassDefinition def=new ClassDefinition(Fruit.class,FruitTransformer.getClassBytes(fileName));inst.redefineClasses(new ClassDefinition[]{def});}}

主程序可以直接复用上面的,执行后打印:

banana

可以看到,用我们指定的class文件的字节替换了原有类,即实现了指定类的替换。

retransformClasses

retransformClasses

应用于agentmain模式,可以在类加载之后重新定义Class,即触发类的重新加载。首先看一下该方法的定义:

void retransformClasses(Class<?>... classes) throws UnmodifiableClassException;

它的参数

classes

是需要转换的类数组,可变长参数也说明了它和

redefineClasses

方法一样,也可以批量转换类的定义。

下面,我们通过例子来看看如何使用

retransformClasses

方法,agent代理部分代码如下:

public class RetransformAgent {public static void agentmain(String agentArgs, Instrumentation inst)throws UnmodifiableClassException {inst.addTransformer(new FruitTransformer(),true);inst.retransformClasses(Fruit.class);System.out.println("retransform success");}}

看一下这里调用的

addTransformer

方法的定义,与上面略有不同:

void addTransformer(ClassFileTransformer transformer, boolean canRetransform);

ClassFileTransformer

转换器依旧复用了上面的

FruitTransformer

,重点看一下新加的第二个参数,当

canRetransform

true

时,表示允许重新定义class。这时,相当于调用了转换器

ClassFileTransformer

中的

transform

方法,会将转换后class的字节作为新类定义进行加载。

主程序部分代码,我们在死循环中不断的执行打印语句,来监控类是否发生了改变:

public class RetransformMain {public static void main(String[] args) throws InterruptedException {while(true){new Fruit().getFruit();TimeUnit.SECONDS.sleep(5);}}}

最后,使用attach api注入agent代理到主程序中:

public class AttachRetransform {public static void main(String[] args) throws Exception {VirtualMachine vm = VirtualMachine.attach("6380");vm.loadAgent("F:\\\\Workspace\\\\MyAgent\\\\target\\\\retransformAgent-1.0.jar");}}

回到主程序控制台,查看运行结果:

可以看到在注入代理后,打印语句发生变化,说明类的定义已经被改变并进行了重新加载。

其他

除了这几个主要的方法外,

Instrumentation

中还有一些其他方法,这里仅简单列举一下常用方法的功能:

  • removeTransformer

    :删除一个

    ClassFileTransformer

    类转换器

  • getAllLoadedClasses

    :获取当前已经被加载的Class

  • getInitiatedClasses

    :获取由指定的

    ClassLoader

    加载的Class

  • getObjectSize

    :获取一个对象占用空间的大小

  • appendToBootstrapClassLoaderSearch

    :添加jar包到启动类加载器

  • appendToSystemClassLoaderSearch

    :添加jar包到系统类加载器

  • isNativeMethodPrefixSupported

    :判断是否能给native方法添加前缀,即是否能够拦截native方法

  • setNativeMethodPrefix

    :设置native方法的前缀

Javassist

在上面的几个例子中,我们都是直接读取的class文件中的字节来进行class的重定义或转换,但是在实际的工作环境中,可能更多的是去动态的修改class文件的字节码,这时候就可以借助javassist来更简单的修改字节码文件。

简单来说,javassist是一个分析、编辑和创建java字节码的类库,在使用时我们可以直接调用它提供的api,以编码的形式动态改变或生成class的结构。相对于ASM等其他要求了解底层虚拟机指令的字节码框架,javassist真的是非常简单和快捷。

下面,我们就通过一个简单的例子,看看如何将Java agent和Javassist结合在一起使用。首前先引入javassist的依赖:

<dependency><groupId>org.javassist</groupId><artifactId>javassist</artifactId><version>3.20.0-GA</version></dependency>

我们要实现的功能是通过代理,来计算方法执行的时间。premain代理部分和之前基本一致,先添加一个转换器:

public class Agent {public static void premain(String agentArgs, Instrumentation inst) {inst.addTransformer(new LogTransformer());}static class LogTransformer implements ClassFileTransformer {@Overridepublic byte[] transform(ClassLoader loader, String className, Class<?> classBeingRedefined,ProtectionDomain protectionDomain, byte[] classfileBuffer)throws IllegalClassFormatException {if (!className.equals("com/cn/hydra/test/Fruit"))return null;try {return calculate();} catch (Exception e) {e.printStackTrace();return null;}}}}

calculate

方法中,使用javassist动态的改变了方法的定义:

static byte[] calculate() throws Exception {ClassPool pool = ClassPool.getDefault();CtClass ctClass = pool.get("com.cn.hydra.test.Fruit");CtMethod ctMethod = ctClass.getDeclaredMethod("getFruit");CtMethod copyMethod = CtNewMethod.copy(ctMethod, ctClass, new ClassMap());ctMethod.setName("getFruit$agent");StringBuffer body = new StringBuffer("{\\n").append("long begin = System.nanoTime();\\n").append("getFruit$agent($$);\\n").append("System.out.println(\\"use \\"+(System.nanoTime() - begin) +\\" ns\\");\\n").append("}");copyMethod.setBody(body.toString());ctClass.addMethod(copyMethod);return ctClass.toBytecode();}

在上面的代码中,主要实现了这些功能:

  • 利用全限定名获取类
    CtClass
  • 根据方法名获取方法
    CtMethod

    ,并通过

    CtNewMethod.copy

    方法复制一个新的方法

  • 修改旧方法的方法名为
    getFruit$agent
  • 通过
    setBody

    方法修改复制出来方法的内容,在新方法中进行了逻辑增强并调用了旧方法,最后将新方法添加到类中

主程序仍然复用之前的代码,执行查看结果,完成了代理中的执行时间统计功能:

这时候我们可以再通过反射看一下:

for (Method method : Fruit.class.getDeclaredMethods()) {System.out.println(method.getName());method.invoke(new Fruit());System.out.println("-------");}

查看结果,可以看到类中确实已经新增了一个方法:

除此之外,javassist还有很多其他的功能,例如新建Class、设置父类、读取和写入字节码等等,大家可以在具体的场景中学习它的用法。

总结

虽然我们在平常的工作中,直接用到Java Agent的场景可能并不是很多,但是在热部署、监控、性能分析等工具中,它们可能隐藏在业务系统的角落里,一直在默默发挥着巨大的作用。

本文从Java Agent的两种模式入手,手动实现并简要分析了它们的工作流程,虽然在这里只利用它们完成了一些简单的功能,但是不得不说,正是Java Agent的出现,让程序的运行不再循规蹈矩,也为我们的代码提供了无限的可能性。

作者简介,

码农参上

(CODER_SANJYOU),一个热爱分享的公众号,有趣、深入、直接,与你聊聊技术。个人微信DrHydra9,欢迎添加好友,进一步交流。

赞(0) 打赏
未经允许不得转载:爱站程序员基地 » 偷天换日,用JavaAgent欺骗你的JVM