AI智能
改变未来

利用torch.nn实现前馈神经网络解决 二分类 任务


1 导入包

import torchimport torch.nn as nnfrom torch.utils.data import TensorDataset,DataLoaderfrom torch.nn import initimport torch.optim as optimfrom sklearn.model_selection import train_test_splitimport numpy as npimport matplotlib.pyplot as plt

2 创建数据

num_inputs,num_example = 200,10000x1 = torch.normal(2,1,(num_example,num_inputs))y1 = torch.ones((num_example,1))x2 = torch.normal(-2,1,(num_example,num_inputs))y2 = torch.zeros((num_example,1))x_data = torch.cat((x1,x2),dim=0)y_data = torch.cat((y1,y2),dim = 0)train_x,test_x,train_y,test_y = train_test_split(x_data,y_data,shuffle=True,test_size=0.3,stratify=y_data)

3 加载数据

batch_size = 256train_dataset = TensorDataset(train_x,train_y)train_iter = DataLoader(dataset = train_dataset,shuffle = True,num_workers = 0,batch_size = batch_size)test_dataset = TensorDataset(test_x,test_y)test_iter = DataLoader(dataset = test_dataset,shuffle = True,num_workers = 0,batch_size = batch_size)

4 模型定义

num_input,num_hidden,num_output = 200,256,1class net(nn.Module):def __init__(self,num_input,num_hidden,num_output):super(net,self).__init__()self.linear1 = nn.Linear(num_input,num_hidden,bias =False)self.linear2 = nn.Linear(num_hidden,num_output,bias=False)def forward(self,input):out = self.linear1(input)out = self.linear2(out)return out

5 模型初始化

model = net(num_input,num_hidden,num_output)print(model)
for param in model.parameters():init.normal_(param,mean=0,std=0.001)

6 定义训练函数

lr = 0.001loss = nn.BCEWithLogitsLoss()optimizer = optim.SGD(model.parameters(),lr)def train(net,train_iter,test_iter,loss,num_epochs,batch_size):train_ls,test_ls,train_acc,test_acc = [],[],[],[]for epoch in range(num_epochs):train_ls_sum,train_acc_sum,n = 0,0,0for x,y in train_iter:y_pred = model(x)l = loss(y_pred,y)optimizer.zero_grad()l.backward()optimizer.step()train_ls_sum +=l.item()train_acc_sum += (((y_pred>0.5)==y)+0.0).sum().item()n += y_pred.shape[0]train_ls.append(train_ls_sum)train_acc.append(train_acc_sum/n)test_ls_sum,test_acc_sum,n = 0,0,0for x,y in test_iter:y_pred = model(x)l = loss(y_pred,y)test_ls_sum +=l.item()test_acc_sum += (((y_pred>0.5)==y)+0.0).sum().item()n += y_pred.shape[0]test_ls.append(test_ls_sum)test_acc.append(test_acc_sum/n)print(\'epoch %d, train_loss %.6f,test_loss %f, train_acc %.6f,test_acc %f\'%(epoch+1, train_ls[epoch],test_ls[epoch], train_acc[epoch],test_acc[epoch]))return train_ls,test_ls,train_acc,test_acc

7 训练

#训练次数和学习率num_epochs = 10train_loss,test_loss,train_acc,test_acc = train(model,train_iter,test_iter,loss,num_epochs,batch_size)

8 可视化

x = np.linspace(0,len(train_loss),len(train_loss))plt.plot(x,train_loss,label=\"train_loss\",linewidth=1.5)plt.plot(x,test_loss,label=\"test_loss\",linewidth=1.5)plt.xlabel(\"epoch\")plt.ylabel(\"loss\")plt.legend()plt.show()

赞(0) 打赏
未经允许不得转载:爱站程序员基地 » 利用torch.nn实现前馈神经网络解决 二分类 任务