计算机视觉中经典的卷积神经网络结构
声明:本文图片和文字来自百度AI Studio 网站,仅仅是做一个搬运处理,以便于后期需要时查询。
- LeNet:Yan LeCun等人于1998年第一次将卷积神经网络应用到图像分类任务上[1],在手写数字识别任务上取得了巨大成功。
- AlexNet:Alex Krizhevsky等人在2012年提出了AlexNet[2],并应用在大尺寸图片数据集ImageNet上,获得了2012年ImageNet比赛冠军(ImageNet Large ScaleVisual Recognition Challenge,ILSVRC)。
- VGG:Simonyan和Zisserman于2014年提出了VGG网络结构[3],是当前最流行的卷积神经网络之一,由于其结构简单、应用性极强而深受广大研究者欢迎。
- GoogLeNet:ChristianSzegedy等人在2014提出了GoogLeNet[4],并取得了2014年ImageNet比赛冠军。
- ResNet:Kaiming He等人在2015年提出了ResNet[5],通过引入残差模块加深网络层数,在ImagNet数据集上的错误率降低到3.6%,超越了人眼识别水平。ResNet的设计思想深刻地影响了后来的深度神经网络的设计。
LeNet
- 第一模块:包含5×5的6通道卷积和2×2的池化。卷积提取图像中包含的特征模式(激活函数使用sigmoid),图像尺寸从32减小到28。经过池化层可以降低输出特征图对空间位置的敏感性,图像尺寸减到14。
- 第二模块:和第一模块尺寸相同,通道数由6增加为16。卷积操作使图像尺寸减小到10,经过池化后变成5。
- 第三模块:包含5×5的120通道卷积。卷积之后的图像尺寸减小到1,但是通道数增加为120。将经过第3次卷积提取到的特征图输入到全连接层。第一个全连接层的输出神经元的个数是64,第二个全连接层的输出神经元个数是分类标签的类别数,对于手写数字识别其大小是10。然后使用Softmax激活函数即可计算出每个类别的预测概率。
AlexNet
AlexNet与LeNet相比,具有更深的网络结构,包含5层卷积和3层全连接,同时使用了如下三种方法改进模型的训练过程:
- 数据增广:深度学习中常用的一种处理方式,通过对训练随机加一些变化,比如平移、缩放、裁剪、旋转、翻转或者增减亮度等,产生一系列跟原始图片相似但又不完全相同的样本,从而扩大训练数据集。通过这种方式,可以随机改变训练样本,避免模型过度依赖于某些属性,能从一定程度上抑制过拟合。
- 使用Dropout抑制过拟合
- 使用ReLU激活函数减少梯度消失现象
VGG
VGG通过使用一系列大小为3×3的小尺寸卷积核和pooling层构造深度卷积神经网络,并取得了较好的效果。
-
VGG-16的网络结构示意图,有13层卷积和3层全连接层。VGG网络的设计严格使用3×3 的卷积层和池化层来提取特征,并在网络的最后面使用三层全连接层,将最后一层全连接层的输出作为分类的预测。
-
在VGG中每层卷积将使用ReLU作为激活函数,在全连接层之后添加dropout来抑制过拟合。使用小的卷积核能够有效地减少参数的个数,使得训练和测试变得更加有效。
GoogLeNet
GoogLeNet是2014年ImageNet比赛的冠军,它的主要特点是网络不仅有深度,还在横向上具有“宽度”。由于图像信息在空间尺寸上的巨大差异,如何选择合适的卷积核大小来提取特征就显得比较困难了。空间分布范围更广的图像信息适合用较大的卷积核来提取其特征,而空间分布范围较小的图像信息则适合用较小的卷积核来提取其特征。为了解决这个问题,GoogLeNet提出了一种被称为Inception模块的方案。
- Inception模块的设计思想,使用3个不同大小的卷积核对输入图片进行卷积操作,并附加最大池化,将这4个操作的输出沿着通道这一维度进行拼接,构成的输出特征图将会包含经过不同大小的卷积核提取出来的特征。Inception模块采用多通路(multi-path)的设计形式,每个支路使用不同大小的卷积核,最终输出特征图的通道数是每个支路输出通道数的总和,这将会导致输出通道数变得很大,尤其是使用多个Inception模块串联操作的时候,模型参数量会变得非常大。为了减小参数量,Inception模块使用了图(b)中的设计方式,在每个3×3和5×5的卷积层之前,增加1×1的卷积层来控制输出通道数;在最大池化层后面增加1×1卷积层减小输出通道数。
GoogLeNet的架构如 图5 所示,在主体卷积部分中使用5个模块(block,每个模块之间使用步幅为2的3 ×3最大池化层来减小输出高宽。
第一模块使用一个64通道的7 × 7卷积层。
第二模块使用2个卷积层:首先是64通道的1 × 1卷积层,然后是将通道增大3倍的3 × 3卷积层。
第三模块串联2个完整的Inception块。
第四模块串联了5个Inception块。
第五模块串联了2 个Inception块。
第五模块的后面紧跟输出层,使用全局平均池化 层来将每个通道的高和宽变成1,最后接上一个输出个数为标签类别数的全连接层。
说明: 在原作者的论文中添加了图中所示的softmax1和softmax2两个辅助分类器,如下图所示,训练时将三个分类器的损失函数进行加权求和,以缓解梯度消失现象。这里的程序作了简化,没有加入辅助分类器。
ResNet
通过前面几个经典模型学习,我们可以发现随着深度学习的不断发展,模型的层数越来越多,网络结构也越来越复杂。那么是否加深网络结构,就一定会得到更好的效果呢?从理论上来说,假设新增加的层都是恒等映射,只要原有的层学出跟原模型一样的参数,那么深模型结构就能达到原模型结构的效果。换句话说,原模型的解只是新模型的解的子空间,在新模型解的空间里应该能找到比原模型解对应的子空间更好的结果。但是实践表明,增加网络的层数之后,训练误差往往不降反升。
Kaiming He等人提出了残差网络ResNet来解决上述问题,其基本思想如 图6所示。
ResNet50
总结:这里介绍了几种经典的图像分类模型,分别是LeNet, AlexNet, VGG, GoogLeNet和ResNet。除了LeNet不适合大尺寸的图像分类问题之外,其它几个模型在此数据集上损失函数都能显著下降,在验证集上的预测精度在90%左右。