在cvpr上少见的使用medical data的paper
Contributions
- 
收集了新的很大的TB dataset:Tuberculosis X-ray (TBX11K) dataset,包括: 
 11200 X-ray Images
 Image-level annotation + TB area annotation using bounding boxes
 Image-level annotations include 4 classes: healthy, active TB, latent TB, & unhealthy but non-TB
- 
Reform existing object detectors to perform simultaneous image classification and TB area detection (SSD, RetinaNet, Faster-RCNN, FCOS),并定义了classification 和 detection 的 metrics。 作为dataset的baselines 
Methods
- 
the classification branch learns to classify X-rays into 3 classes: healthy, sick but non-TB, and TB 
 evaluation metrics: accuracy, auc, sensitivity…
- 
the detection branch learns to detect TBs with 3 classes: active TB, latent TB 
 evaluation metrics: average precision of bounding box
Results
- 和其他datasets的对比,比其他大很多 
- 作者对于每个baseline model都做了实验。从结果上看,Faster-RCNN 和 SSD 的表现比较突出。 
 爱站程序员基地
爱站程序员基地


![[翻译] Backpressure explained — the resisted flow of data through software-爱站程序员基地](https://aiznh.com/wp-content/uploads/2021/05/2-220x150.jpeg)

