目录
- 1、跳过迭代对象的开头
- 2、避免数据复制
- 3、避免变量中间变量
- 4、循环优化
- 5、使用numba.jit
1、跳过迭代对象的开头
string_from_file = \"\"\" // Wooden: ... // LaoLi: ... // // Whole: ... Wooden LaoLi... \"\"\" import itertools for line in itertools.dropwhile(lambda line: line.startswith(\"//\"), string_from_file.split(\" \")): print(line)
2、避免数据复制
# 不推荐写法,代码耗时:6.5秒def main(): size = 10000 for _ in range(size): value = range(size) value_list = [x for x in value] square_list = [x * x for x in value_list] main()
# 推荐写法,代码耗时:4.8秒def main(): size = 10000 for _ in range(size): value = range(size) square_list = [x * x for x in value] # 避免无意义的复制
3、避免变量中间变量
# 不推荐写法,代码耗时:0.07秒def main(): size = 1000000 for _ in range(size): a = 3 b = 5 temp = a a = b b = temp main()
# 推荐写法,代码耗时:0.06秒def main(): size = 1000000 for _ in range(size): a = 3 b = 5 a, b = b, a # 不借助中间变量 main()
4、循环优化
# 不推荐写法。代码耗时:6.7秒def computeSum(size: int) -> int: sum_ = 0 i = 0 while i < size: sum_ += i i += 1 return sum_ def main(): size = 10000 for _ in range(size): sum_ = computeSum(size) main()
# 推荐写法。代码耗时:4.3秒def computeSum(size: int) -> int: sum_ = 0 for i in range(size): # for 循环代替 while 循环 sum_ += i return sum_ def main(): size = 10000 for _ in range(size): sum_ = computeSum(size) main()
隐式for循环代替显式for循环
# 推荐写法。代码耗时:1.7秒def computeSum(size: int) -> int: return sum(range(size)) # 隐式 for 循环代替显式 for 循环 def main(): size = 10000 for _ in range(size): sum = computeSum(size) main()
5、使用numba.jit
# 推荐写法。代码耗时:0.62秒# numba可以将 Python 函数 JIT 编译为机器码执行,大大提高代码运行速度。import numba @numba.jitdef computeSum(size: float) -> int: sum = 0 for i in range(size): sum += i return sum def main(): size = 10000 for _ in range(size): sum = computeSum(size) main()
到此这篇关于分享5个python提速技巧,速度瞬间提上来了的文章就介绍到这了,更多相关python提速技巧内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
您可能感兴趣的文章:
- 能让Python提速超40倍的神器Cython详解
- python频繁写入文件时提速的方法
- 使用Protocol Buffers的C语言拓展提速Python程序的示例