AI智能
改变未来

第二节课Matplotlib


练习1

  • 为了对某一产品进行合理定价,我们对此类商品进行了试销实验,价格与需求量数据如下。利用图表分析规律。
  • price = [60,80,40,30,70,90,95]
  • sales = [100,50,120,135,65,45,40]
from matplotlib import pyplot as pltplt.rcParams[\'font.sans-serif\'] = [\'SimHei\']plt.rcParams[\'axes.unicode_minus\'] =Falsex =  [60,80,40,30,70,90,95]y = [100,50,120,135,65,45,40]plt.figure(figsize=(13,8))width=1.5x_bar=np.arange(7)plt.title(\'价格与需求量的关系\')plt.grid(True)plt.bar(x,y,align=\'center\',bottom=30,width=width,color=\'purple\')plt.show()

练习二

  • 电影数据如下:
  • movies_name = [“变身特工”,“美丽人生”,“鲨海逃生”,“熊出没·狂野大陆”]
  • day_12 = [2358,399,2358,362]
  • day_13 = [12357,156,2045,168]
  • day_14 = [15746,312,4497,319]

需求

  • 示例图如下(基本需求都需实现):
from matplotlib import pyplot as pltplt.rcParams[\'font.sans-serif\'] = [\'SimHei\']plt.rcParams[\'axes.unicode_minus\'] =Falseplt.figure(figsize=(14,8))movies_name = [\"变身特工\",\"美丽人生\",\"鲨海逃生\",\"熊出没·狂野大陆\"]day_12 = [2358,399,2358,362]day_13 = [12357,156,2045,168]day_14 = [15746,312,4497,319]width=0.2p1=[i-width for i in list(range(len(movies_name)))]p2=[i for i in list(range(len(movies_name)))]p3=[i+width for i in list(range(len(movies_name)))]plt.bar(p1,day_12,width=width,color=\'red\',label=\'d_12\')plt.bar(p2,day_13,width=width,color=\'yellow\',label=\'d_13\')plt.bar(p3,day_14,width=width,color=\'green\',label=\'d_14\')x_l=np.arange(len(movies_name))x_t=[\"变身特工\",\"美丽人生\",\"鲨海逃生\",\"熊出没·狂野大陆\"]plt.title(\'2020年12至14日电影票房\')# for a,b in zip(movies_name,[day_12,day_13,day_14]):#     plt.text(a,b,)plt.legend()def auto_label(x_po,y_po):for x_i,y_i in zip(x_po,y_po):plt.annotate(f\"{y_i}\",xy=(x_i,y_i),xytext=(x_i,y_i-0.1))auto_label(p1,day_12)auto_label(p2,day_13)auto_label(p3,day_14)plt.show()
赞(0) 打赏
未经允许不得转载:爱站程序员基地 » 第二节课Matplotlib