AI智能
改变未来

(六:2020.08.22)MICCAI 2019 追踪之论文纲要(上)

MICCAI 2019 追踪之论文纲要(上)(脑神经、心脏及其血管、图像分割、图像配准)(修正于2020.08.22)

  • 前言
  • PART I
  • 1.Optical Imaging(光学影像)
  • 1.1《Enhancing OCT Signal by Fusion of GANs: Improving Statistical Power of Glaucoma Clinical Trials》(通过GAN融合增强OCT信号:提高青光眼临床试验的统计能力)
  • 1.2《A Deep Reinforcement Learning Framework for Frame-by-Frame Plaque Tracking on Intravascular Optical Coherence Tomography Image》(用于血管内光学相干断层扫描图像的逐帧斑块跟踪的深度强化学习框架)
  • 1.3《Multi-index Optic Disc Quantification via MultiTask Ensemble Learning》(通过多任务集成学习进行多指标光盘定量)
  • 1.4《Retinal Abnormalities Recognition Using Regional Multitask Learning》(使用区域多任务学习的视网膜异常识别)
  • 1.5《Unifying Structure Analysis and Surrogate-Driven Function Regression for Glaucoma OCT Image Screening》(青光眼OCT图像筛选的统一结构分析和替代驱动功能回归)
  • 1.6《Evaluation of Retinal Image Quality Assessment Networks in Different Color-Spaces》(不同色彩空间中视网膜图像质量评估网络的评估)
  • 1.7《3D Surface-Based Geometric and Topological Quantification of Retinal Microvasculature in OCT-Angiography via Reeb Analysis》(基于Reeb分析的OCT血管造影术中视网膜微血管的3D基于表面的几何和拓扑定量)
  • 1.8《Limited-Angle Diffuse Optical Tomography Image Reconstruction Using Deep Learning》(深度学习的有限角度漫射光学层析成像图像重建)
  • 1.9《Data-Driven Enhancement of Blurry Retinal Images via Generative Adversarial Networks》(通过生成对抗网络进行数据驱动的模糊视网膜图像增强)
  • 1.10《Dual Encoding U-Net for Retinal Vessel Segmentation》(视网膜血管分割的双重编码U-Net)
  • 1.11《A Deep Learning Design for Improving Topology Coherence in Blood Vessel Segmentation》(改善血管分割中拓扑一致性的深度学习设计)
  • 1.12《Boundary and Entropy-Driven Adversarial Learning for Fundus Image Segmentation》(边界和熵驱动的对抗学习用于眼底图像分割)
  • 1.13《Unsupervised Ensemble Strategy for Retinal Vessel Segmentation》(视网膜血管分割的无监督合并策略)
  • 1.14《Fully Convolutional Boundary Regression for Retina OCT Segmentation》(视网膜OCT分割的全卷积边界回归)
  • 1.15《PM-Net: Pyramid Multi-label Network for Joint Optic Disc and Cup Segmentation》(PM-Net:金字塔多标签网络,用于联合光盘和杯分割)
  • 1.16《Biological Age Estimated from Retinal Imaging: A Novel Biomarker of Aging》(从视网膜成像估计生物年龄:生物年龄的新型标志)
  • 1.17《Task Adaptive Metric Space for Medium-Shot Medical Image Classification》(中等自适应医学图像分类的任务自适应度量空间)
  • 1.18《Two-Stream CNN with Loose Pair Training for Multi-modal AMD Categorization》(带有松散对训练的两流CNN用于多模式AMD分类)
  • 1.19《Deep Multi-label Classification in Affine Subspaces》(仿射子空间中的深度多标签分类)
  • 1.20《Multi-scale Microaneurysms Segmentation Using Embedding Triplet Loss》(嵌入Triplet Loss的多尺度微动脉瘤分割)
  • 1.21《A Divide-and-Conquer Approach Towards Understanding Deep Networks》(一种理解深度网络的分而治之方法)
  • 1.22《Multiclass Segmentation as Multitask Learning for Drusen Segmentation in Retinal Optical Coherence Tomography》(视网膜光学相干断层扫描中玻璃疣分割的多类分割作为多任务学习)
  • 1.23《Active Appearance Model Induced Generative Adversarial Network for Controlled Data Augmentation》(用于受控数据增强的主动外观模型诱导的生成对抗网络)
  • 1.24《Biomarker Localization by Combining CNN Classifier and Generative Adversarial Network》(结合CNN分类器和生成对抗网络进行生物标记定位)
  • 1.25《Probabilistic Atlases to Enforce Topological Constraints》(概率图集可增强拓扑约束)
  • 1.26《Synapse-Aware Skeleton Generation for Neural Circuits》(用于神经回路的突触感知骨架生成)
  • 1.27《Seeing Under the Cover: A Physics Guided Learning Approach for In-bed Pose Estimation》(幕后观察:对卧床姿势估计的物理指导学习方法)
  • 1.28《EDA-Net: Dense Aggregation of Deep and Shallow Information Achieves Quantitative Photoacoustic Blood Oxygenation Imaging Deep in Human Breast》(EDA-Net:深层和浅层信息的密集聚集实现了人体乳房深处的定量光声血氧充氧成像)
  • 1.29《Fused Detection of Retinal Biomarkers in OCT Volumes》(对OCT中的视网膜生物标志进行混融合侦测)
  • 1.30《Vessel-Net: Retinal Vessel Segmentation Under Multi-path Supervision》(Vessel-Net:多路径监测下的视网膜血管分割)
  • 1.31《Ki-GAN: Knowledge Infusion Generative Adversarial Network for Photoacoustic Image Reconstruction In Vivo》(Ki-GAN:知识注入生成对抗网络,用于体内光声图像重建)
  • 1.32《Uncertainty Guided Semi-supervised Segmentation of Retinal Layers in OCT Images》(OCT图像中不确定性指导的视网膜层半监督分割)
  • 2.Endoscopy(内镜检查)
    • 2.1《Triple ANet: Adaptive Abnormal-aware Attention Network for WCE Image Classification》(Triple ANet:用于WCE图像分类的自适应异常感知注意力网络)
    • 2.2《Selective Feature Aggregation Network with Area-Boundary Constraints for Polyp Segmentation》(用于息肉分割的具有区域边界约束选择性特征聚合网络)
    • 2.3《Deep Sequential Mosaicking of Fetoscopic Videos》(胎镜检查视频的深度序列拼接)
    • 2.4《Landmark-Guided Deformable Image Registration for Supervised Autonomous Robotic Tumor Resection》(具有里程碑意义的可指导自主性肿瘤切除的可变形图像配准)
    • 2.5《Multi-view Learning with Feature Level Fusion for Cervical Dysplasia Diagnosis》(对宫颈发育不良的诊断:具有功能水平融合的多视图学习)
    • 2.6《Real-Time Surface Deformation Recovery from Stereo Videos》(从立体声视频实时恢复表面变形)
  • 3.Microscopy(显微镜观察)
    • 3.1《Rectified Cross-Entropy and Upper Transition Loss for Weakly Supervised Whole Slide Image Classifier》(对弱监督滑动图像分类器进行交叉熵的矫正和上转换损失的改进)
    • 3.2《From Whole Slide Imaging to Microscopy: Deep Microscopy Adaptation Network for Histopathology Cancer Image Classification》(从全玻片成像到显微镜:用于组织病理学癌症图像分类的深层显微镜适应网络)
    • 3.3《Multi-scale Cell Instance Segmentation with Keypoint Graph Based Bounding Boxes》(基于关键点图的边界框的多尺度单元实例分割)
    • 3.4《Improving Nuclei/Gland Instance Segmentation in Histopathology Images by Full Resolution Neural Network and Spatial Constrained Loss》(通过全分辨率神经网络和空间约束损失改善组织病理学图像中的核/腺实例分割)
    • 3.5《Synthetic Augmentation and Feature-Based Filtering for Improved Cervical Histopathology Image Classification》(合成增强和基于特征的滤波可改善宫颈组织病理学图像分类)
    • 3.6《Cell Tracking with Deep Learning for Cell Detection and Motion Estimation in Low-Frame-Rate》(具有深度学习的细胞跟踪,可在低帧率下进行细胞检测和运动估计)
    • 3.7《Accelerated ML-Assisted Tumor Detection in High-Resolution Histopathology Images》(加速高分辨率组织病理学图像中的ML辅助肿瘤检测)
    • 3.8《Pre-operative Overall Survival Time Prediction for Glioblastoma Patients Using Deep Learning on Both Imaging Phenotype and Genotype》(利用深度学习,通过在胶质母细胞瘤在成像表型和基因型上的应用,来预测其在术前的患者身上的总生存时间)
    • 3.9《Pathology-Aware Deep Network Visualization and Its Application in Glaucoma Image Synthesis》(病理感知的深层网络可视化及其在青光眼图像合成中的应用)
    • 3.10《CORAL8: Concurrent Object Regression for Area Localization in Medical Image Panels》(CORAL8:医学图像面板中区域定位的并发对象回归)
    • 3.11《ET-Net: A Generic Edge-aTtention Guidance Network for Medical Image Segmentation》(ET-Net:用于医学图像分割的通用边缘预警指导网络)
    • 3.12《Instance Segmentation of Biomedical Images with an Object-Aware Embedding Learned with Local Constraints》(具有局部约束的对象感知嵌入的生物医学图像实例分割)
    • 3.13《Diverse Multiple Prediction on Neuron Image Reconstruction》(神经元图像重建的多元预测)
    • 3.14《Deep Segmentation-Emendation Model for Gland Instance Segmentation》(用于腺体实例分割的深度分割-修正模型)
    • 3.15《Fast and Accurate Electron Microscopy Image Registration with 3D Convolution》(具有3D卷积的快速,准确的电子显微镜图像配准)
    • 3.16《PlacentaNet: Automatic Morphological Characterization of Placenta Photos with Deep Learning》(PlacentaNet:具有深度学习功能的胎盘照片的自动形态表征)
    • 3.17《Deep Multi-instance Learning for Survival Prediction from Whole Slide Images》(从整个滑动图像进行生存预测的深度多实例学习)
    • 3.18《High-Resolution Diabetic Retinopathy Image Synthesis Manipulated by Grading and Lesions》(通过分级和病变处理高分辨率糖尿病性视网膜病图像合成)
    • 3.19《Deep Instance-Level Hard Negative Mining Model for Histopathology Images》(组织病理学图像的深实例级硬阴性挖掘模型)
    • 3.20《Synthetic Patches, Real Images: Screening for Centrosome Aberrations in EM Images of Human Cancer Cells》(合成补丁,真实图像:筛选人类癌细胞EM图像中的中心体畸变)
    • 3.21《Patch Transformer for Multi-tagging Whole Slide Histopathology Images》(用于多标记整个玻片组织病理学图像的patch转换器)
    • 3.22《Pancreatic Cancer Detection in Whole Slide Images Using Noisy Label Annotations》(使用噪声标签注释在整个滑动图像中检测胰腺癌)
    • 3.23《Encoding Histopathological WSIs Using GNN for Scalable Diagnostically Relevant Regions Retrieval》(使用GNN编码组织病理学WSI进行可扩展的诊断相关区域检索)
    • 3.24《Local and Global Consistency Regularized Mean Teacher for Semi-supervised Nuclei Classification》(半监督核分类的局部和全局一致性正规教师)
    • 3.25《Perceptual Embedding Consistency for Seamless Reconstruction of Tilewise Style Transfer》(Tilewise风格迁移的无缝重构的感知嵌入一致性)
    • 3.26《Precise Separation of Adjacent Nuclei Using a Siamese Neural Network》(使用暹罗神经网络精确分离相邻核)
    • 3.27《PFA-ScanNet: Pyramidal Feature Aggregation with Synergistic Learning for Breast Cancer Metastasis Analysis》(PFA-ScanNet:金字塔形特征聚合与协同学习进行乳腺癌转移分析)
    • 3.28《DeepACE: Automated Chromosome Enumeration in Metaphase Cell Images Using Deep Convolutional Neural Networks》(DeepACE:使用深度卷积神经网络在中期细胞图像中自动进行染色体计数)
    • 3.29《Unsupervised Subtyping of Cholangiocarcinoma Using a Deep Clustering Convolutional Autoencoder》(使用深度聚类卷积自动编码器的胆管癌无监督分型)
    • 3.30《Evidence Localization for Pathology Images Using Weakly Supervised Learning》(使用弱监督学习的病理图像证据定位)
    • 3.31《Nuclear Instance Segmentation Using a Proposal-Free Spatially Aware Deep Learning Framework》(使用无提议的空间感知深度学习框架进行核实例分割)
    • 3.32《GAN-Based Image Enrichment in Digital Pathology Boosts Segmentation Accuracy》(基于GAN的数字病理图像富集可提高分割精度)
    • 3.33《IRNet: Instance Relation Network for Overlapping Cervical Cell Segmentation》(IRNet:重叠宫颈细胞分割的实例关系网络)
    • 3.34《Weakly Supervised Cell Instance Segmentation by Propagating from Detection Response》(通过检测响应的传播来弱监督细胞实例分割)
    • 3.35《Robust Non-negative Tensor Factorization, Diffeomorphic Motion Correction, and Functional Statistics to Understand Fixation in Fluorescence Microscopy》(稳健的非负张量分解,二形运动校正和功能统计,以了解荧光显微镜中的固定)
    • 3.36《ConCORDe-Net: Cell Count Regularized Convolutional Neural Network for Cell Detection in Multiplex Immunohistochemistry Images》(ConCORDe-Net:细胞计数正则化卷积神经网络用于多重免疫组织化学图像中的细胞检测)
    • 3.37《Multi-task Learning of a Deep K-Nearest Neighbour Network for Histopathological Image Classification and Retrieval》(深度K最近邻网络的多任务学习,用于组织病理学图像分类和检索)
    • 3.38《Multiclass Deep Active Learning for Detecting Red Blood Cell Subtypes in Brightfield Microscopy》(多类深度主动学习,用于在明场显微镜中检测红细胞亚型)
    • 3.39《Enhanced Cycle-Consistent Generative Adversarial Network for Color Normalization of H&E Stained Images》(用于H&E染色图像颜色归一化的增强型循环一致生成对抗网络)
    • 3.40《Nuclei Segmentation in Histopathological Images Using Two-Stage Learning》(使用两阶段学习的组织病理学图像中的核分割)
    • 3.41《ACE-Net: Biomedical Image Segmentation with Augmented Contracting and Expansive Paths》(ACE-Net:具有增强的收缩和扩张路径的生物医学图像分割)
    • 3.42《CS-Net: Channel and Spatial Attention Network for Curvilinear Structure Segmentation》(CS-Net:用于曲线结构分割的通道和空间注意网络)
    • 3.43《PseudoEdgeNet: Nuclei Segmentation only with Point Annotations》(PseudoEdgeNet:仅使用点注释进行核分割)
    • 3.44《Adversarial Domain Adaptation and Pseudo-Labeling for Cross-Modality Microscopy Image Quantification》(对抗域自适应和伪标签的跨模态显微镜图像量化)
    • 3.45《Progressive Learning for Neuronal Population Reconstruction from Optical Microscopy Images》(从光学显微镜图像进行神经元种群重建的渐进学习)
    • 3.46《Whole-Sample Mapping of Cancerous and Benign Tissue Properties》(癌性和良性组织特性的全样本映射)
    • 3.47《Multi-task Neural Networks with Spatial Activation for Retinal Vessel Segmentation and Artery/Vein Classification》(具有空间激活功能的多任务神经网络,用于视网膜血管分割和动脉/静脉分类)
    • 3.48《Fine-Scale Vessel Extraction in Fundus Images by Registration with Fluorescein Angiography》(通过荧光素血管造影术对眼底图像进行精细血管提取)
    • 3.49《DME-Net: Diabetic Macular Edema Grading by Auxiliary Task Learning》(DME-Net:通过辅助任务学习对糖尿病性黄斑水肿进行分级)
    • 3.50《Attention Guided Network for Retinal Image Segmentation》(视网膜图像分割的注意力导向网络)
    • 3.51《An Unsupervised Domain Adaptation Approach to Classification of Stem Cell-Derived Cardiomyocytes》(一种无监督域适应方法来分类干细胞衍生的心肌细胞)
  • PART II
    • 1.Image Segmentation(医学图像分割)
    • 1.1《Searching Learning Strategy with Reinforcement Learning for 3D Medical Image Segmentation》(通过强化学习搜索学习策略进行3D医学图像分割)
    • 1.2《Comparative Evaluation of Hand-Engineered and Deep-Learned Features for Neonatal Hip Bone Segmentation in Ultrasound》(传统手工方式和深度学习方式在新生儿髋骨超声影响诊断方面的评估和比较)
    • 1.3《Unsupervised Quality Control of Image Segmentation Based on Bayesian Learning》(基于贝叶斯学习的图像分割无监督质量控制)
    • 1.4《One Network to Segment Them All: A General, Lightweight System for Accurate 3D Medical Image Segmentation》(一个网络将其全部分割:用于精确3D医学图像分割的通用轻型系统)
    • 1.5《‘Project & Excite’ Modules for Segmentation of Volumetric Medical Scans》(用于分段体检的“ Project&Excite”模块)
    • 1.6《Assessing Reliability and Challenges of Uncertainty Estimations for Medical Image Segmentation》(评估医学图像分割的这种不确定性估计方法的可靠性和挑战)
    • 1.7《Learning Cross-Modal Deep Representations for Multi-Modal MR Image Segmentation》(学习用于多模态MR图像分割的跨模态深度表示)
    • 1.8《Extreme Points Derived Confidence Map as a Cue for Class-Agnostic Interactive Segmentation Using Deep Neural Network》(极点派生置信度图作为使用深度神经网络进行类不可知的交互式分割的提示)
    • 1.9《Hetero-Modal Variational Encoder-Decoder for Joint Modality Completion and Segmentation》(联合模态完成和分段的异模变编码器/解码器)
    • 1.10《Instance Segmentation from Volumetric Biomedical Images Without Voxel-Wise Labeling》(没有体素明智标记的体积生物医学图像中的实例分割)
    • 1.11《Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory and Practice》(为医学图像分割进行dice分数和Jaccard指数的优化:理论与实践)
    • 1.12《Dual Adaptive Pyramid Network for Cross-Stain Histopathology Image Segmentation》(用于克罗斯氏染剂(染噬细胞及细菌)病理学图像分割的双重自适应金字塔网络)
    • 1.13《HD-Net: Hybrid Discriminative Network for Prostate Segmentation in MR Images》(HD-Net:MR图像中前列腺分割的混合判别网络)
    • 1.14《PHiSeg: Capturing Uncertainty in Medical Image Segmentation》(PHiSeg:捕获医学图像分割中的不确定性)
    • 1.15《Neural Style Transfer Improves 3D Cardiovascular MR Image Segmentation on Inconsistent Data》(神经风格迁移可改善不一致数据上的3D心血管MR图像分割)
    • 1.16《Supervised Uncertainty Quantification for Segmentation with Multiple Annotations》(对多标签有监督学习下不确定性的量化分析)
    • 1.17《3D Tiled Convolution for Effective Segmentation of Volumetric Medical Images》(3D平铺卷积可有效分割体积医学图像)
    • 1.18《Hyper-Pairing Network for Multi-phase Pancreatic Ductal Adenocarcinoma Segmentation》(超配对网络用于多期胰腺导管腺癌分割)
    • 1.19《Statistical Intensity- and Shape-Modeling to Automate Cerebrovascular Segmentation from TOF-MRA Data》(统计强度和形状建模,可从TOF-MRA数据自动进行脑血管分割)
    • 1.20《Segmentation of Vessels in Ultra High Frequency Ultrasound Sequences Using Contextual Memory》(使用上下文记忆的超高频超声序列中的血管分割)
    • 1.21《Accurate Esophageal Gross Tumor Volume Segmentation in PET/CT Using Two-Stream Chained 3D Deep Network Fusion》(使用两流链式3D深度网络融合技术在PET / CT中精确进行食管肿瘤总体积分割)
    • 1.22《Mixed-Supervised Dual-Network for Medical Image Segmentation》(用于医学图像分割的混合监督双网络)
    • 1.23《Fully Automated Pancreas Segmentation with Two-Stage 3D Convolutional Neural Networks》(具有两阶段3D卷积神经网络的全自动胰腺分割)
    • 1.24《Globally Guided Progressive Fusion Network for 3D Pancreas Segmentation》(全局引导的渐进融合网络,用于3D胰腺分割)
    • 1.25《Automatic Segmentation of Muscle Tissue and Inter-muscular Fat in Thigh and Calf MRI Images》(大腿和小腿MRI图像中肌肉组织和肌肉间脂肪的自动分割)
    • 1.26《Resource Optimized Neural Architecture Search for 3D Medical Image Segmentation》(资源优化的神经体系结构搜索,用于3D医学图像分割)
    • 1.27《Radiomics-guided GAN for Segmentation of Liver Tumor Without Contrast Agents》(放射学指导的GAN用于无造影剂的肝肿瘤分割)
    • 1.28《Liver Segmentation in Magnetic Resonance Imaging via Mean Shape Fitting with Fully Convolutional Neural Networks》(利用神经网络拟合均值形状从而对MRI中的肝进行分割)
    • 1.29《Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver Segmentation》(通过解散表示的无监督域自适应:在跨模态肝分割中的应用)
    • 1.30《Automatic Segmentation of Vestibular Schwannoma from T2-Weighted MRI by Deep Spatial Attention with Hardness-Weighted Loss》(通过带有Hardness-Weighted loss的深度空间注意力机制,实现对T2加权MRI图像中的前庭神经鞘瘤进行分割)
    • 1.31《Learning Shape Representation on Sparse Point Clouds for Volumetric Image Segmentation》(学习稀疏点云上的形状表示以进行体积图像分割)
    • 1.32《Collaborative Multi-agent Learning for MR Knee Articular Cartilage Segmentation》(MR膝关节软骨分割的协作式多智能体学习)
    • 1.33《3D U2 -Net: A 3D Universal U-Net for Multi-domain Medical Image Segmentation》(3D U2 -Net:用于多领域医学图像分割的3D通用U-Net)
    • 1.34《Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation》(对抗性示例对用于生物医学图像分割的深度学习模型的影响)
    • 1.35《Multi-resolution Path CNN with Deep Supervision for Intervertebral Disc Localization and Segmentation》(深度监控的多分辨率路径CNN用于椎间盘定位和分割)
    • 1.36《Automatic Paraspinal Muscle Segmentation in Patients with Lumbar Pathology Using Deep Convolutional Neural Network》(利用深度卷积网络对腰部患者的椎旁肌肉进行自动分割)
    • 1.37《Constrained Domain Adaptation for Segmentation》(约束域自适应分割)
  • 2.Image Registration(医学图像配准)
    • 2.1《Image-and-Spatial Transformer Networks for Structure-Guided Image Registration》(用于结构引导图像配准的图像空间变换网络)
    • 2.2《Probabilistic Multilayer Regularization Network for Unsupervised 3D Brain Image Registration》(用于无监督3D脑图像配准的概率多层正则化网络)
    • 2.3《A Deep Learning Approach to MR-less Spatial Normalization for Tau PET Images》(Tau PET图像的无MR空间归一化的深度学习方法)
    • 2.4《TopAwaRe: Topology-Aware Registration》(TopAwaRe:拓扑感知配准)
    • 2.5《Multimodal Data Registration for Brain Structural Association Networks》(脑结构关联网络的多峰数据配准)
    • 2.6《Dual-Stream Pyramid Registration Network》(双流金字塔配准网络)
    • 2.7《A Cooperative Autoencoder for Population-Based Regularization of CNN Image Registration》(基于人口的CNN图像配准正则化的协作自动编码器)
    • 2.8《Conditional Segmentation in Lieu of Image Registration》(条件分割代替图像配准)
    • 2.9《On the Applicability of Registration Uncertainty》(论配准不确定性的适用性)
    • 2.10《DeepAtlas: Joint Semi-supervised Learning of Image Registration and Segmentation》(DeepAtlas:图像配准和分割的联合半监督学习)
    • 2.11《Linear Time Invariant Model Based Motion Correction (LiMo-MoCo) of Dynamic Radial Contrast Enhanced MRI》(基于线性时不变模型的动态径向对比度增强MRI的运动校正(LiMo-MoCo))
    • 2.12《Incompressible Image Registration Using Divergence-Conforming B-Splines》(使用符合散度的B样条的不可压缩图像配准)
  • 3.Cardiovascular Imaging(心血管成像)
    • 3.1《Direct Quantification for Coronary Artery Stenosis Using Multiview Learning》(使用多视点学习直接量化冠状动脉狭窄)
    • 3.2《Bayesian Optimization on Large Graphs via a Graph Convolutional Generative Model: Application in Cardiac Model Personalization》(通过图卷积生成模型对大图进行贝叶斯优化:在心脏模型个性化中的应用)
    • 3.3《Discriminative Coronary Artery Tracking via 3D CNN in Cardiac CT Angiography》(在心脏CT血管造影中通过3D CNN进行有区别的冠状动脉追踪)
    • 3.4《Whole Heart and Great Vessel Segmentation in Congenital Heart Disease Using Deep Neural Networks and Graph Matching》(使用深度神经网络和图匹配的先天性心脏病全心脏和大血管分割)
    • 3.5《Harmonic Balance Techniques in Cardiovascular Fluid Mechanics》(心血管流体力学中的谐波平衡技术)
    • 3.6《Deep Learning Within a Priori Temporal Feature Spaces for Large-Scale Dynamic MR Image Reconstruction: Application to 5-D Cardiac MR Multitasking》(大规模动态MR图像重建的先验时间特征空间内的深度学习:应用于5维心脏MR多任务处理)
    • 3.7《k-t NEXT: Dynamic MR Image Reconstruction Exploiting Spatio-Temporal Correlations》(k-t NEXT:利用时空相关性的动态MR图像重建)
    • 3.8《Model-Based Reconstruction for Highly Accelerated First-Pass Perfusion Cardiac MRI》(基于模型的高速初次灌注心肌MRI重建)
    • 3.9《Learning Shape Priors for Robust Cardiac MR Segmentation from Multi-view Images》(从多视图图像中学习形状先验,以实现可靠的心脏MR分割)
    • 3.10《Right Ventricle Segmentation in Short-Axis MRI Using a Shape Constrained Dense Connected U-Net》(使用形状约束密集连接U-Net的短轴MRI中的右心室分割)
    • 3.11《Self-Supervised Learning for Cardiac MR Image Segmentation by Anatomical Position Prediction》(通过解剖位置预测对心脏MR图像进行自我监督学习)
    • 3.12《A Fine-Grain Error Map Prediction and Segmentation Quality Assessment Framework for Whole-Heart Segmentation》(用于全心分割的细粒度误差图预测和分割质量评估框架)
    • 3.13《Cardiac Segmentation from LGE MRI Using Deep Neural Network Incorporating Shape and Spatial Priors》(使用结合形状和空间先验的深度神经网络从LGE MRI进行心脏分割)
    • 3.14《Curriculum Semi-supervised Segmentation》(课程半监督细分)
    • 3.15《A Multi-modality Network for Cardiomyopathy Death Risk Prediction with CMR Images and Clinical Information》(利用CMR图像和临床信息进行心肌病死亡风险预测的多模式网络)
    • 3.16《3D Cardiac Shape Prediction with Deep Neural Networks: Simultaneous Use of Images and Patient Metadata》(深度神经网络的3D心脏形状预测:图像和患者元数据的同时使用)
    • 3.17《Discriminative Consistent Domain Generation for Semi-supervised Learning》(半监督学习的判别一致域生成)
    • 3.18《Uncertainty-Aware Self-ensembling Model for Semi-supervised 3D Left Atrium Segmentation》(半监督3D左心房分割的不确定度自组装模型)
    • 3.19《MSU-Net: Multiscale Statistical U-Net for Real-Time 3D Cardiac MRI Video Segmentation》(MSU-Net:用于实时3D心脏MRI视频分割的多尺度统计U-Net)
    • 3.20《The Domain Shift Problem of Medical Image Segmentation and Vendor-Adaptation by Unet-GAN》(Unet-GAN解决医学图像分割和Vendor-Adaptation的域转移问题)
    • 3.21《Cardiac MRI Segmentation with Strong Anatomical Guarantees》(具有强大解剖学保证的心脏MRI分割)
    • 3.22《Decompose-and-Integrate Learning for Multi-class Segmentation in Medical Images》(分解和集成学习用于医学图像中的多类分割)
    • 3.23《Missing Slice Imputation in Population CMR Imaging via Conditional Generative Adversarial Nets》(通过条件生成对抗网络在人体CMR成像中进行缺少切片的插补)
    • 3.24《Unsupervised Standard Plane Synthesis in Population Cine MRI via Cycle-Consistent Adversarial Networks》(通过周期一致对抗网络进行人体MRI中的无监督标准平面合成)
    • 3.25《Data Efficient Unsupervised Domain Adaptation For Cross-modality Image Segmentation》(跨模态图像分割的高效数据无监督域自适应)
    • 3.26《Recurrent Aggregation Learning for Multi-view Echocardiographic Sequences Segmentation》(递归聚集学习的多视图超声心动图序列分割)
    • 3.27《Echocardiography View Classification Using Quality Transfer Star Generative Adversarial Networks》(使用质量传递星生成对抗网络的超声心动图视图分类)
    • 3.28《Dual-View Joint Estimation of Left Ventricular Ejection Fraction with Uncertainty Modelling in Echocardiograms》(超声心动图不确定性模型的左心室射血分数的双视图联合估计)
    • 3.29《Frame Rate Up-Conversion in Echocardiography Using a Conditioned Variational Autoencoder and Generative Adversarial Model》(使用条件变分自动编码器和生成对抗模型的超声心动图帧速率上转换)
    • 3.30《Annotation-Free Cardiac Vessel Segmentation via Knowledge Transfer from Retinal Images》(通过视网膜图像中的知识迁移进行无注释的心脏血管分割)
    • 3.31《DeepAAA: Clinically Applicable and Generalizable Detection of Abdominal Aortic Aneurysm Using Deep Learning》(DeepAAA:使用深度学习的腹主动脉瘤的临床适用和通用检测)
    • 3.32《Texture-Based Classification of Significant Stenosis in CCTA Multi-view Images of Coronary Arteries》(CCTA冠状动脉多视图图像中基于纹理的重要狭窄分类)
    • 3.33《Fourier Spectral Dynamic Data Assimilation: Interlacing CFD with 4D Flow MRI》(傅立叶光谱动态数据同化:CFD与4D流MRI交错)
    • 3.34《Quality Control-Driven Image Segmentation Towards Reliable Automatic Image Analysis in Large-Scale Cardiovascular Magnetic Resonance Aortic Cine Imaging》(质量控制驱动的图像分割,在大型心血管磁共振主动脉成像中实现可靠的自动图像分析)
    • 3.35《HFA-Net: 3D Cardiovascular Image Segmentation with Asymmetrical Pooling and Content-Aware Fusion》(HFA-Net:具有不对称合并和内容感知融合的3D心血管图像分割)
    • 3.36《Spectral CT Based Training Dataset Generation and Augmentation for Conventional CT Vascular Segmentation》(基于频谱CT的常规CT血管分割的训练数据集生成和增强)
    • 3.37《Context-Aware Inductive Bias Learning for Vessel Border Detection in Multi-modal Intracoronary Imaging》(用于多模式冠状动脉内成像的血管边界检测的上下文感知归纳偏置学习)
  • 4.Growth, Development, Atrophy, and Progression(生长、发展、萎缩、进展)
    • 4.1《Neural Parameters Estimation for Brain Tumor Growth Modeling》(神经肿瘤生长模型的神经参数估计)
    • 4.2《Learning-Guided Infinite Network Atlas Selection for Predicting Longitudinal Brain Network Evolution from a Single Observation》(学习指导的无限网络图集选择,用于通过一次观察预测纵向脑网络的演化)
    • 4.3《Deep Probabilistic Modeling of Glioma Growth》(脑胶质瘤生长的深度概率模型)
    • 4.4《Surface-Volume Consistent Construction of Longitudinal Atlases for the Early Developing Brain》(早期发育大脑的纵向图纹的表面体积一致构造)
    • 4.5《Variational AutoEncoder for Regression: Application to Brain Aging Analysis》(回归的变分自动编码器:在脑衰老分析中的应用)
    • 4.6《Early Development of Infant Brain Complex Network》(婴儿脑复杂网络的早期发展)
    • 4.7《Revealing Developmental Regionalization of Infant Cerebral Cortex Based on Multiple Cortical Properties》(基于多个皮质特性揭示婴儿大脑皮质的发育区域)
    • 4.8《Continually Modeling Alzheimer’s Disease Progression via Deep Multi-order Preserving Weight Consolidation》(通过深度多阶保持体重合并对阿尔茨海默氏病进展进行持续建模)
    • 4.9《Disease Knowledge Transfer Across Neurodegenerative Diseases》(跨神经退行性疾病的疾病知识迁移)

    前言

    • 一、纯粹是为了满足个人的求知欲望,我突然很想从MICCAI 2019开始,不断挖掘论文里的有趣的思想,所以之后的很长一段时间,我将会以个人的视角翻译、解析并适当论证论文的一些方法;
    • 二、很希望能有更多的读者提出意见,我也是从0开始去实现这么一件事;
    • 三、我会以自己的工作需求为导向,挑选当前有帮助的论文进行学习,尽量从论文本身出发,并结合靠谱的博客进行总结和归纳。
    • 四、本博客是将所有MICCAI 2019的论文做了罗列,论文按照MICCAI
      分类方式分成6个PART,每个PART又分为不同的子任务,由于不同的PART的不同论文很可能有知识和目的上的交叉,我没有做总结和分类,当后期尽量多的论文摘要被我理解之后,我会以关键字的形式对每篇论文进行点缀。其次,中文的译文部分也会在我理解之后进行修改,显然机器翻译是一定有问题的,我能理解的都会做翻译的改进。

    PART I

    1.Optical Imaging(光学影像)

    1.1《Enhancing OCT Signal by Fusion of GANs: Improving Statistical Power of Glaucoma Clinical Trials》(通过GAN融合增强OCT信号:提高青光眼临床试验的统计能力)

    1.2《A Deep Reinforcement Learning Framework for Frame-by-Frame Plaque Tracking on Intravascular Optical Coherence Tomography Image》(用于血管内光学相干断层扫描图像的逐帧斑块跟踪的深度强化学习框架)

    1.3《Multi-index Optic Disc Quantification via MultiTask Ensemble Learning》(通过多任务集成学习进行多指标光盘定量)

    1.4《Retinal Abnormalities Recognition Using Regional Multitask Learning》(使用区域多任务学习的视网膜异常识别)

    1.5《Unifying Structure Analysis and Surrogate-Driven Function Regression for Glaucoma OCT Image Screening》(青光眼OCT图像筛选的统一结构分析和替代驱动功能回归)

    1.6《Evaluation of Retinal Image Quality Assessment Networks in Different Color-Spaces》(不同色彩空间中视网膜图像质量评估网络的评估)

    1.7《3D Surface-Based Geometric and Topological Quantification of Retinal Microvasculature in OCT-Angiography via Reeb Analysis》(基于Reeb分析的OCT血管造影术中视网膜微血管的3D基于表面的几何和拓扑定量)

    1.8《Limited-Angle Diffuse Optical Tomography Image Reconstruction Using Deep Learning》(深度学习的有限角度漫射光学层析成像图像重建)

    1.9《Data-Driven Enhancement of Blurry Retinal Images via Generative Adversarial Networks》(通过生成对抗网络进行数据驱动的模糊视网膜图像增强)

    1.10《Dual Encoding U-Net for Retinal Vessel Segmentation》(视网膜血管分割的双重编码U-Net)

    1.11《A Deep Learning Design for Improving Topology Coherence in Blood Vessel Segmentation》(改善血管分割中拓扑一致性的深度学习设计)

    1.12《Boundary and Entropy-Driven Adversarial Learning for Fundus Image Segmentation》(边界和熵驱动的对抗学习用于眼底图像分割)

    1.13《Unsupervised Ensemble Strategy for Retinal Vessel Segmentation》(视网膜血管分割的无监督合并策略)

    1.14《Fully Convolutional Boundary Regression for Retina OCT Segmentation》(视网膜OCT分割的全卷积边界回归)

    1.15《PM-Net: Pyramid Multi-label Network for Joint Optic Disc and Cup Segmentation》(PM-Net:金字塔多标签网络,用于联合光盘和杯分割)

    1.16《Biological Age Estimated from Retinal Imaging: A Novel Biomarker of Aging》(从视网膜成像估计生物年龄:生物年龄的新型标志)

    1.17《Task Adaptive Metric Space for Medium-Shot Medical Image Classification》(中等自适应医学图像分类的任务自适应度量空间)

    1.18《Two-Stream CNN with Loose Pair Training for Multi-modal AMD Categorization》(带有松散对训练的两流CNN用于多模式AMD分类)

    1.19《Deep Multi-label Classification in Affine Subspaces》(仿射子空间中的深度多标签分类)

    1.20《Multi-scale Microaneurysms Segmentation Using Embedding Triplet Loss》(嵌入Triplet Loss的多尺度微动脉瘤分割)

    1.21《A Divide-and-Conquer Approach Towards Understanding Deep Networks》(一种理解深度网络的分而治之方法)

    1.22《Multiclass Segmentation as Multitask Learning for Drusen Segmentation in Retinal Optical Coherence Tomography》(视网膜光学相干断层扫描中玻璃疣分割的多类分割作为多任务学习)

    1.23《Active Appearance Model Induced Generative Adversarial Network for Controlled Data Augmentation》(用于受控数据增强的主动外观模型诱导的生成对抗网络)

    1.24《Biomarker Localization by Combining CNN Classifier and Generative Adversarial Network》(结合CNN分类器和生成对抗网络进行生物标记定位)

    1.25《Probabilistic Atlases to Enforce Topological Constraints》(概率图集可增强拓扑约束)

    1.26《Synapse-Aware Skeleton Generation for Neural Circuits》(用于神经回路的突触感知骨架生成)

    1.27《Seeing Under the Cover: A Physics Guided Learning Approach for In-bed Pose Estimation》(幕后观察:对卧床姿势估计的物理指导学习方法)

    1.28《EDA-Net: Dense Aggregation of Deep and Shallow Information Achieves Quantitative Photoacoustic Blood Oxygenation Imaging Deep in Human Breast》(EDA-Net:深层和浅层信息的密集聚集实现了人体乳房深处的定量光声血氧充氧成像)

    1.29《Fused Detection of Retinal Biomarkers in OCT Volumes》(对OCT中的视网膜生物标志进行混融合侦测)

    1.30《Vessel-Net: Retinal Vessel Segmentation Under Multi-path Supervision》(Vessel-Net:多路径监测下的视网膜血管分割)

    1.31《Ki-GAN: Knowledge Infusion Generative Adversarial Network for Photoacoustic Image Reconstruction In Vivo》(Ki-GAN:知识注入生成对抗网络,用于体内光声图像重建)

    1.32《Uncertainty Guided Semi-supervised Segmentation of Retinal Layers in OCT Images》(OCT图像中不确定性指导的视网膜层半监督分割)

    2.Endoscopy(内镜检查)

    2.1《Triple ANet: Adaptive Abnormal-aware Attention Network for WCE Image Classification》(Triple ANet:用于WCE图像分类的自适应异常感知注意力网络)

    2.2《Selective Feature Aggregation Network with Area-Boundary Constraints for Polyp Segmentation》(用于息肉分割的具有区域边界约束选择性特征聚合网络)

    2.3《Deep Sequential Mosaicking of Fetoscopic Videos》(胎镜检查视频的深度序列拼接)

    2.4《Landmark-Guided Deformable Image Registration for Supervised Autonomous Robotic Tumor Resection》(具有里程碑意义的可指导自主性肿瘤切除的可变形图像配准)

    2.5《Multi-view Learning with Feature Level Fusion for Cervical Dysplasia Diagnosis》(对宫颈发育不良的诊断:具有功能水平融合的多视图学习)

    2.6《Real-Time Surface Deformation Recovery from Stereo Videos》(从立体声视频实时恢复表面变形)

    3.Microscopy(显微镜观察)

    3.1《Rectified Cross-Entropy and Upper Transition Loss for Weakly Supervised Whole Slide Image Classifier》(对弱监督滑动图像分类器进行交叉熵的矫正和上转换损失的改进)

    3.2《From Whole Slide Imaging to Microscopy: Deep Microscopy Adaptation Network for Histopathology Cancer Image Classification》(从全玻片成像到显微镜:用于组织病理学癌症图像分类的深层显微镜适应网络)

    3.3《Multi-scale Cell Instance Segmentation with Keypoint Graph Based Bounding Boxes》(基于关键点图的边界框的多尺度单元实例分割)

    3.4《Improving Nuclei/Gland Instance Segmentation in Histopathology Images by Full Resolution Neural Network and Spatial Constrained Loss》(通过全分辨率神经网络和空间约束损失改善组织病理学图像中的核/腺实例分割)

    3.5《Synthetic Augmentation and Feature-Based Filtering for Improved Cervical Histopathology Image Classification》(合成增强和基于特征的滤波可改善宫颈组织病理学图像分类)

    3.6《Cell Tracking with Deep Learning for Cell Detection and Motion Estimation in Low-Frame-Rate》(具有深度学习的细胞跟踪,可在低帧率下进行细胞检测和运动估计)

    3.7《Accelerated ML-Assisted Tumor Detection in High-Resolution Histopathology Images》(加速高分辨率组织病理学图像中的ML辅助肿瘤检测)

    3.8《Pre-operative Overall Survival Time Prediction for Glioblastoma Patients Using Deep Learning on Both Imaging Phenotype and Genotype》(利用深度学习,通过在胶质母细胞瘤在成像表型和基因型上的应用,来预测其在术前的患者身上的总生存时间)

    3.9《Pathology-Aware Deep Network Visualization and Its Application in Glaucoma Image Synthesis》(病理感知的深层网络可视化及其在青光眼图像合成中的应用)

    3.10《CORAL8: Concurrent Object Regression for Area Localization in Medical Image Panels》(CORAL8:医学图像面板中区域定位的并发对象回归)

    3.11《ET-Net: A Generic Edge-aTtention Guidance Network for Medical Image Segmentation》(ET-Net:用于医学图像分割的通用边缘预警指导网络)

    3.12《Instance Segmentation of Biomedical Images with an Object-Aware Embedding Learned with Local Constraints》(具有局部约束的对象感知嵌入的生物医学图像实例分割)

    3.13《Diverse Multiple Prediction on Neuron Image Reconstruction》(神经元图像重建的多元预测)

    3.14《Deep Segmentation-Emendation Model for Gland Instance Segmentation》(用于腺体实例分割的深度分割-修正模型)

    3.15《Fast and Accurate Electron Microscopy Image Registration with 3D Convolution》(具有3D卷积的快速,准确的电子显微镜图像配准)

    3.16《PlacentaNet: Automatic Morphological Characterization of Placenta Photos with Deep Learning》(PlacentaNet:具有深度学习功能的胎盘照片的自动形态表征)

    3.17《Deep Multi-instance Learning for Survival Prediction from Whole Slide Images》(从整个滑动图像进行生存预测的深度多实例学习)

    3.18《High-Resolution Diabetic Retinopathy Image Synthesis Manipulated by Grading and Lesions》(通过分级和病变处理高分辨率糖尿病性视网膜病图像合成)

    3.19《Deep Instance-Level Hard Negative Mining Model for Histopathology Images》(组织病理学图像的深实例级硬阴性挖掘模型)

    3.20《Synthetic Patches, Real Images: Screening for Centrosome Aberrations in EM Images of Human Cancer Cells》(合成补丁,真实图像:筛选人类癌细胞EM图像中的中心体畸变)

    3.21《Patch Transformer for Multi-tagging Whole Slide Histopathology Images》(用于多标记整个玻片组织病理学图像的patch转换器)

    3.22《Pancreatic Cancer Detection in Whole Slide Images Using Noisy Label Annotations》(使用噪声标签注释在整个滑动图像中检测胰腺癌)

    3.23《Encoding Histopathological WSIs Using GNN for Scalable Diagnostically Relevant Regions Retrieval》(使用GNN编码组织病理学WSI进行可扩展的诊断相关区域检索)

    3.24《Local and Global Consistency Regularized Mean Teacher for Semi-supervised Nuclei Classification》(半监督核分类的局部和全局一致性正规教师)

    3.25《Perceptual Embedding Consistency for Seamless Reconstruction of Tilewise Style Transfer》(Tilewise风格迁移的无缝重构的感知嵌入一致性)

    3.26《Precise Separation of Adjacent Nuclei Using a Siamese Neural Network》(使用暹罗神经网络精确分离相邻核)

    3.27《PFA-ScanNet: Pyramidal Feature Aggregation with Synergistic Learning for Breast Cancer Metastasis Analysis》(PFA-ScanNet:金字塔形特征聚合与协同学习进行乳腺癌转移分析)

    3.28《DeepACE: Automated Chromosome Enumeration in Metaphase Cell Images Using Deep Convolutional Neural Networks》(DeepACE:使用深度卷积神经网络在中期细胞图像中自动进行染色体计数)

    3.29《Unsupervised Subtyping of Cholangiocarcinoma Using a Deep Clustering Convolutional Autoencoder》(使用深度聚类卷积自动编码器的胆管癌无监督分型)

    3.30《Evidence Localization for Pathology Images Using Weakly Supervised Learning》(使用弱监督学习的病理图像证据定位)

    3.31《Nuclear Instance Segmentation Using a Proposal-Free Spatially Aware Deep Learning Framework》(使用无提议的空间感知深度学习框架进行核实例分割)

    3.32《GAN-Based Image Enrichment in Digital Pathology Boosts Segmentation Accuracy》(基于GAN的数字病理图像富集可提高分割精度)

    3.33《IRNet: Instance Relation Network for Overlapping Cervical Cell Segmentation》(IRNet:重叠宫颈细胞分割的实例关系网络)

    3.34《Weakly Supervised Cell Instance Segmentation by Propagating from Detection Response》(通过检测响应的传播来弱监督细胞实例分割)

    3.35《Robust Non-negative Tensor Factorization, Diffeomorphic Motion Correction, and Functional Statistics to Understand Fixation in Fluorescence Microscopy》(稳健的非负张量分解,二形运动校正和功能统计,以了解荧光显微镜中的固定)

    3.36《ConCORDe-Net: Cell Count Regularized Convolutional Neural Network for Cell Detection in Multiplex Immunohistochemistry Images》(ConCORDe-Net:细胞计数正则化卷积神经网络用于多重免疫组织化学图像中的细胞检测)

    3.37《Multi-task Learning of a Deep K-Nearest Neighbour Network for Histopathological Image Classification and Retrieval》(深度K最近邻网络的多任务学习,用于组织病理学图像分类和检索)

    3.38《Multiclass Deep Active Learning for Detecting Red Blood Cell Subtypes in Brightfield Microscopy》(多类深度主动学习,用于在明场显微镜中检测红细胞亚型)

    3.39《Enhanced Cycle-Consistent Generative Adversarial Network for Color Normalization of H&E Stained Images》(用于H&E染色图像颜色归一化的增强型循环一致生成对抗网络)

    3.40《Nuclei Segmentation in Histopathological Images Using Two-Stage Learning》(使用两阶段学习的组织病理学图像中的核分割)

    3.41《ACE-Net: Biomedical Image Segmentation with Augmented Contracting and Expansive Paths》(ACE-Net:具有增强的收缩和扩张路径的生物医学图像分割)

    3.42《CS-Net: Channel and Spatial Attention Network for Curvilinear Structure Segmentation》(CS-Net:用于曲线结构分割的通道和空间注意网络)

    3.43《PseudoEdgeNet: Nuclei Segmentation only with Point Annotations》(PseudoEdgeNet:仅使用点注释进行核分割)

    3.44《Adversarial Domain Adaptation and Pseudo-Labeling for Cross-Modality Microscopy Image Quantification》(对抗域自适应和伪标签的跨模态显微镜图像量化)

    3.45《Progressive Learning for Neuronal Population Reconstruction from Optical Microscopy Images》(从光学显微镜图像进行神经元种群重建的渐进学习)

    3.46《Whole-Sample Mapping of Cancerous and Benign Tissue Properties》(癌性和良性组织特性的全样本映射)

    3.47《Multi-task Neural Networks with Spatial Activation for Retinal Vessel Segmentation and Artery/Vein Classification》(具有空间激活功能的多任务神经网络,用于视网膜血管分割和动脉/静脉分类)

    3.48《Fine-Scale Vessel Extraction in Fundus Images by Registration with Fluorescein Angiography》(通过荧光素血管造影术对眼底图像进行精细血管提取)

    3.49《DME-Net: Diabetic Macular Edema Grading by Auxiliary Task Learning》(DME-Net:通过辅助任务学习对糖尿病性黄斑水肿进行分级)

    3.50《Attention Guided Network for Retinal Image Segmentation》(视网膜图像分割的注意力导向网络)

    3.51《An Unsupervised Domain Adaptation Approach to Classification of Stem Cell-Derived Cardiomyocytes》(一种无监督域适应方法来分类干细胞衍生的心肌细胞)

    PART II

    1.Image Segmentation(医学图像分割)

    1.1《Searching Learning Strategy with Reinforcement Learning for 3D Medical Image Segmentation》(通过强化学习搜索学习策略进行3D医学图像分割)

    1.2《Comparative Evaluation of Hand-Engineered and Deep-Learned Features for Neonatal Hip Bone Segmentation in Ultrasound》(传统手工方式和深度学习方式在新生儿髋骨超声影响诊断方面的评估和比较)

    1.3《Unsupervised Quality Control of Image Segmentation Based on Bayesian Learning》(基于贝叶斯学习的图像分割无监督质量控制)

    1.4《One Network to Segment Them All: A General, Lightweight System for Accurate 3D Medical Image Segmentation》(一个网络将其全部分割:用于精确3D医学图像分割的通用轻型系统)

    1.5《‘Project & Excite’ Modules for Segmentation of Volumetric Medical Scans》(用于分段体检的“ Project&Excite”模块)

    1.6《Assessing Reliability and Challenges of Uncertainty Estimations for Medical Image Segmentation》(评估医学图像分割的这种不确定性估计方法的可靠性和挑战)

    1.7《Learning Cross-Modal Deep Representations for Multi-Modal MR Image Segmentation》(学习用于多模态MR图像分割的跨模态深度表示)

    1.8《Extreme Points Derived Confidence Map as a Cue for Class-Agnostic Interactive Segmentation Using Deep Neural Network》(极点派生置信度图作为使用深度神经网络进行类不可知的交互式分割的提示)

    1.9《Hetero-Modal Variational Encoder-Decoder for Joint Modality Completion and Segmentation》(联合模态完成和分段的异模变编码器/解码器)

    1.10《Instance Segmentation from Volumetric Biomedical Images Without Voxel-Wise Labeling》(没有体素明智标记的体积生物医学图像中的实例分割)

    1.11《Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory and Practice》(为医学图像分割进行dice分数和Jaccard指数的优化:理论与实践)

    1.12《Dual Adaptive Pyramid Network for Cross-Stain Histopathology Image Segmentation》(用于克罗斯氏染剂(染噬细胞及细菌)病理学图像分割的双重自适应金字塔网络)

    1.13《HD-Net: Hybrid Discriminative Network for Prostate Segmentation in MR Images》(HD-Net:MR图像中前列腺分割的混合判别网络)

    ^^^

    1.14《PHiSeg: Capturing Uncertainty in Medical Image Segmentation》(PHiSeg:捕获医学图像分割中的不确定性)

    1.15《Neural Style Transfer Improves 3D Cardiovascular MR Image Segmentation on Inconsistent Data》(神经风格迁移可改善不一致数据上的3D心血管MR图像分割)

    1.16《Supervised Uncertainty Quantification for Segmentation with Multiple Annotations》(对多标签有监督学习下不确定性的量化分析)

    1.17《3D Tiled Convolution for Effective Segmentation of Volumetric Medical Images》(3D平铺卷积可有效分割体积医学图像)

    1.18《Hyper-Pairing Network for Multi-phase Pancreatic Ductal Adenocarcinoma Segmentation》(超配对网络用于多期胰腺导管腺癌分割)

    1.19《Statistical Intensity- and Shape-Modeling to Automate Cerebrovascular Segmentation from TOF-MRA Data》(统计强度和形状建模,可从TOF-MRA数据自动进行脑血管分割)

    1.20《Segmentation of Vessels in Ultra High Frequency Ultrasound Sequences Using Contextual Memory》(使用上下文记忆的超高频超声序列中的血管分割)

    1.21《Accurate Esophageal Gross Tumor Volume Segmentation in PET/CT Using Two-Stream Chained 3D Deep Network Fusion》(使用两流链式3D深度网络融合技术在PET / CT中精确进行食管肿瘤总体积分割)

    1.22《Mixed-Supervised Dual-Network for Medical Image Segmentation》(用于医学图像分割的混合监督双网络)

    1.23《Fully Automated Pancreas Segmentation with Two-Stage 3D Convolutional Neural Networks》(具有两阶段3D卷积神经网络的全自动胰腺分割)

    1.24《Globally Guided Progressive Fusion Network for 3D Pancreas Segmentation》(全局引导的渐进融合网络,用于3D胰腺分割)

    1.25《Automatic Segmentation of Muscle Tissue and Inter-muscular Fat in Thigh and Calf MRI Images》(大腿和小腿MRI图像中肌肉组织和肌肉间脂肪的自动分割)

    1.26《Resource Optimized Neural Architecture Search for 3D Medical Image Segmentation》(资源优化的神经体系结构搜索,用于3D医学图像分割)

    1.27《Radiomics-guided GAN for Segmentation of Liver Tumor Without Contrast Agents》(放射学指导的GAN用于无造影剂的肝肿瘤分割)

    1.28《Liver Segmentation in Magnetic Resonance Imaging via Mean Shape Fitting with Fully Convolutional Neural Networks》(利用神经网络拟合均值形状从而对MRI中的肝进行分割)

    1.29《Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver Segmentation》(通过解散表示的无监督域自适应:在跨模态肝分割中的应用)

    1.30《Automatic Segmentation of Vestibular Schwannoma from T2-Weighted MRI by Deep Spatial Attention with Hardness-Weighted Loss》(通过带有Hardness-Weighted loss的深度空间注意力机制,实现对T2加权MRI图像中的前庭神经鞘瘤进行分割)

    1.31《Learning Shape Representation on Sparse Point Clouds for Volumetric Image Segmentation》(学习稀疏点云上的形状表示以进行体积图像分割)

    1.32《Collaborative Multi-agent Learning for MR Knee Articular Cartilage Segmentation》(MR膝关节软骨分割的协作式多智能体学习)

    1.33《3D U2 -Net: A 3D Universal U-Net for Multi-domain Medical Image Segmentation》(3D U2 -Net:用于多领域医学图像分割的3D通用U-Net)

    1.34《Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation》(对抗性示例对用于生物医学图像分割的深度学习模型的影响)

    1.35《Multi-resolution Path CNN with Deep Supervision for Intervertebral Disc Localization and Segmentation》(深度监控的多分辨率路径CNN用于椎间盘定位和分割)

    1.36《Automatic Paraspinal Muscle Segmentation in Patients with Lumbar Pathology Using Deep Convolutional Neural Network》(利用深度卷积网络对腰部患者的椎旁肌肉进行自动分割)

    1.37《Constrained Domain Adaptation for Segmentation》(约束域自适应分割)

    2.Image Registration(医学图像配准)

    2.1《Image-and-Spatial Transformer Networks for Structure-Guided Image Registration》(用于结构引导图像配准的图像空间变换网络)

    2.2《Probabilistic Multilayer Regularization Network for Unsupervised 3D Brain Image Registration》(用于无监督3D脑图像配准的概率多层正则化网络)

    2.3《A Deep Learning Approach to MR-less Spatial Normalization for Tau PET Images》(Tau PET图像的无MR空间归一化的深度学习方法)

    2.4《TopAwaRe: Topology-Aware Registration》(TopAwaRe:拓扑感知配准)

    2.5《Multimodal Data Registration for Brain Structural Association Networks》(脑结构关联网络的多峰数据配准)

    2.6《Dual-Stream Pyramid Registration Network》(双流金字塔配准网络)

    2.7《A Cooperative Autoencoder for Population-Based Regularization of CNN Image Registration》(基于人口的CNN图像配准正则化的协作自动编码器)

    2.8《Conditional Segmentation in Lieu of Image Registration》(条件分割代替图像配准)

    2.9《On the Applicability of Registration Uncertainty》(论配准不确定性的适用性)

    2.10《DeepAtlas: Joint Semi-supervised Learning of Image Registration and Segmentation》(DeepAtlas:图像配准和分割的联合半监督学习)

    2.11《Linear Time Invariant Model Based Motion Correction (LiMo-MoCo) of Dynamic Radial Contrast Enhanced MRI》(基于线性时不变模型的动态径向对比度增强MRI的运动校正(LiMo-MoCo))

    2.12《Incompressible Image Registration Using Divergence-Conforming B-Splines》(使用符合散度的B样条的不可压缩图像配准)

    3.Cardiovascular Imaging(心血管成像)

    3.1《Direct Quantification for Coronary Artery Stenosis Using Multiview Learning》(使用多视点学习直接量化冠状动脉狭窄)

    3.2《Bayesian Optimization on Large Graphs via a Graph Convolutional Generative Model: Application in Cardiac Model Personalization》(通过图卷积生成模型对大图进行贝叶斯优化:在心脏模型个性化中的应用)

    3.3《Discriminative Coronary Artery Tracking via 3D CNN in Cardiac CT Angiography》(在心脏CT血管造影中通过3D CNN进行有区别的冠状动脉追踪)

    3.4《Whole Heart and Great Vessel Segmentation in Congenital Heart Disease Using Deep Neural Networks and Graph Matching》(使用深度神经网络和图匹配的先天性心脏病全心脏和大血管分割)

    3.5《Harmonic Balance Techniques in Cardiovascular Fluid Mechanics》(心血管流体力学中的谐波平衡技术)

    3.6《Deep Learning Within a Priori Temporal Feature Spaces for Large-Scale Dynamic MR Image Reconstruction: Application to 5-D Cardiac MR Multitasking》(大规模动态MR图像重建的先验时间特征空间内的深度学习:应用于5维心脏MR多任务处理)

    3.7《k-t NEXT: Dynamic MR Image Reconstruction Exploiting Spatio-Temporal Correlations》(k-t NEXT:利用时空相关性的动态MR图像重建)

    3.8《Model-Based Reconstruction for Highly Accelerated First-Pass Perfusion Cardiac MRI》(基于模型的高速初次灌注心肌MRI重建)

    3.9《Learning Shape Priors for Robust Cardiac MR Segmentation from Multi-view Images》(从多视图图像中学习形状先验,以实现可靠的心脏MR分割)

    3.10《Right Ventricle Segmentation in Short-Axis MRI Using a Shape Constrained Dense Connected U-Net》(使用形状约束密集连接U-Net的短轴MRI中的右心室分割)

    3.11《Self-Supervised Learning for Cardiac MR Image Segmentation by Anatomical Position Prediction》(通过解剖位置预测对心脏MR图像进行自我监督学习)

    3.12《A Fine-Grain Error Map Prediction and Segmentation Quality Assessment Framework for Whole-Heart Segmentation》(用于全心分割的细粒度误差图预测和分割质量评估框架)

    3.13《Cardiac Segmentation from LGE MRI Using Deep Neural Network Incorporating Shape and Spatial Priors》(使用结合形状和空间先验的深度神经网络从LGE MRI进行心脏分割)

    3.14《Curriculum Semi-supervised Segmentation》(课程半监督细分)

    3.15《A Multi-modality Network for Cardiomyopathy Death Risk Prediction with CMR Images and Clinical Information》(利用CMR图像和临床信息进行心肌病死亡风险预测的多模式网络)

    3.16《3D Cardiac Shape Prediction with Deep Neural Networks: Simultaneous Use of Images and Patient Metadata》(深度神经网络的3D心脏形状预测:图像和患者元数据的同时使用)

    3.17《Discriminative Consistent Domain Generation for Semi-supervised Learning》(半监督学习的判别一致域生成)

    3.18《Uncertainty-Aware Self-ensembling Model for Semi-supervised 3D Left Atrium Segmentation》(半监督3D左心房分割的不确定度自组装模型)

    3.19《MSU-Net: Multiscale Statistical U-Net for Real-Time 3D Cardiac MRI Video Segmentation》(MSU-Net:用于实时3D心脏MRI视频分割的多尺度统计U-Net)

    3.20《The Domain Shift Problem of Medical Image Segmentation and Vendor-Adaptation by Unet-GAN》(Unet4000-GAN解决医学图像分割和Vendor-Adaptation的域转移问题)

    3.21《Cardiac MRI Segmentation with Strong Anatomical Guarantees》(具有强大解剖学保证的心脏MRI分割)

    3.22《Decompose-and-Integrate Learning for Multi-class Segmentation in Medical Images》(分解和集成学习用于医学图像中的多类分割)

    3.23《Missing Slice Imputation in Population CMR Imaging via Conditional Generative Adversarial Nets》(通过条件生成对抗网络在人体CMR成像中进行缺少切片的插补)

    3.24《Unsupervised Standard Plane Synthesis in Population Cine MRI via Cycle-Consistent Adversarial Networks》(通过周期一致对抗网络进行人体MRI中的无监督标准平面合成)

    3.25《Data Efficient Unsupervised Domain Adaptation For Cross-modality Image Segmentation》(跨模态图像分割的高效数据无监督域自适应)

    3.26《Recurrent Aggregation Learning for Multi-view Echocardiographic Sequences Segmentation》(递归聚集学习的多视图超声心动图序列分割)

    3.27《Echocardiography View Classification Using Quality Transfer Star Generative Adversarial Networks》(使用质量传递星生成对抗网络的超声心动图视图分类)

    3.28《Dual-View Joint Estimation of Left Ventricular Ejection Fraction with Uncertainty Modelling in Echocardiograms》(超声心动图不确定性模型的左心室射血分数的双视图联合估计)

    3.29《Frame Rate Up-Conversion in Echocardiography Using a Conditioned Variational Autoencoder and Generative Adversarial Model》(使用条件变分自动编码器和生成对抗模型的超声心动图帧速率上转换)

    3.30《Annotation-Free Cardiac Vessel Segmentation via Knowledge Transfer from Retinal Images》(通过视网膜图像中的知识迁移进行无注释的心脏血管分割)

    3.31《DeepAAA: Clinically Applicable and Generalizable Detection of Abdominal Aortic Aneurysm Using Deep Learning》(DeepAAA:使用深度学习的腹主动脉瘤的临床适用和通用检测)

    3.32《Texture-Based Classification of Significant Stenosis in CCTA Multi-view Images of Coronary Arteries》(CCTA冠状动脉多视图图像中基于纹理的重要狭窄分类)

    3.33《Fourier Spectral Dynamic Data Assimilation: Interlacing CFD with 4D Flow MRI》(傅立叶光谱动态数据同化:CFD与4D流MRI交错)

    3.34《Quality Control-Driven Image Segmentation Towards Reliable Automatic Image Analysis in Large-Scale Cardiovascular Magnetic Resonance Aortic Cine Imaging》(质量控制驱动的图像分割,在大型心血管磁共振主动脉成像中实现可靠的自动图像分析)

    3.35《HFA-Net: 3D Cardiovascular Image Segmentation with Asymmetrical Pooling and Content-Aware Fusion》(HFA-Net:具有不对称合并和内容感知融合的3D心血管图像分割)

    3.36《Spectral CT Based Training Dataset Generation and Augmentation for Conventional CT Vascular Segmentation》(基于频谱CT的常规CT血管分割的训练数据集生成和增强)

    3.37《Context-Aware Inductive Bias Learning for Vessel Border Detection in Multi-modal Intracoronary Imaging》(用于多模式冠状动脉内成像的血管边界检测的上下文感知归纳偏置学习)

    4.Growth, Development, Atrophy, and Progression(生长、发展、萎缩、进展)

    4.1《Neural Parameters Estimation for Brain Tumor Growth Modeling》(神经肿瘤生长模型的神经参数估计)

    4.2《Learning-Guided Infinite Network Atlas Selection for Predicting Longitudinal Brain Network Evolution from a Single Observation》(学习指导的无限网络图集选择,用于通过一次观察预测纵向脑网络的演化)

    4.3《Deep Probabilistic Modeling of Glioma Growth》(脑胶质瘤生长的深度概率模型)

    4.4《Surface-Volume Consistent Construction of Longitudinal Atlases for the Early Developing Brain》(早期发育大脑的纵向图纹的表面体积一致构造)

    4.5《Variational AutoEncoder for Regression: Application to Brain Aging Analysis》(回归的变分自动编码器:在脑衰老分析中的应用)

    4.6《Early Development of Infant Brain Complex Network》(婴儿脑复杂网络的早期发展)

    4.7《Revealing Developmental Regionalization of Infant Cerebral Cortex Based on Multiple Cortical Properties》(基于多个皮质特性揭示婴儿大脑皮质的发育区域)

    4.8《Continually Modeling Alzheimer’s Disease Progression via Deep Multi-order Preserving Weight Consolidation》(通过深度多阶保持体重合并对阿尔茨海默氏病进展进行持续建模)

    4.9《Disease Knowledge Transfer Across Neurodegenerative Diseases》(跨神经退行性疾病的疾病知识迁移)

    赞(0) 打赏
    未经允许不得转载:爱站程序员基地 » (六:2020.08.22)MICCAI 2019 追踪之论文纲要(上)