AI智能
改变未来

【论文笔记】CVPR2020 Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype Classificatio

又一篇CVPR2020的histo image的文章,cancer subtype classification

Contribution

  • cancer subtype classification 面临三个问题:
  1. tumour and non-tumour regions are mixed, patch label is unavailable
  2. staining conditions vary greatly
  3. when the magnification of image changes, different features would be observed
  • 作者结合以下framework,对于解决上述三个问题,目的是为了mimic real pratice:
  1. multi-instance learning
  2. domain adversarial normalisation (学习了domain adversarial training)
  3. multi-scale learning

Methods

  • multi-instance learning
    人n的WSI分成B_n个Bag,bag b分成I_b个instance,instance i 叫x_i。

    使用WSI-level的label作为supervision,将每个bag的1/0的probability平均起来成为一个人的预测结果:

  • domain adversarial normalisation
    看了看paper: Domain-Adversarial Training of Neural Networks,真神奇。

    通过gradient reversal layer to reverse the gradient by multiplying it by a negative scalar
    during the backpropagation. In this way, the loss of the domain classifier is maximised.

    通过削弱model判断domain的能力,让model以为所有sample都来自一个domain。这样操作,model在不同domain之间判断不出区别,所以更好的利用domain-invariant features (对于判断domain无用的特征)来实现任务,更好的实现domain adaptation。

    在这篇文章中,作者将每个人作为一个domain,the staining condition of each person’s slide can be ignored.

  • multi-scale learning
    训练分为2 stages:先train single-scale DA-MIL,然后再把每个scale训练好的feature extractor放到一起做multiscale。

Results

赞(0) 打赏
未经允许不得转载:爱站程序员基地 » 【论文笔记】CVPR2020 Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype Classificatio